ترغب بنشر مسار تعليمي؟ اضغط هنا

New Mid-Infrared Imaging Constraints on Companions and Protoplanetary Disks around six Young Stars

73   0   0.0 ( 0 )
 نشر من قبل Dominique Petit dit de la Roche
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mid-infrared imaging traces the sub-micron and micron sized dust grains in protoplanetary disks and it offers constraints on the geometrical properties of the disks and potential companions, particularly if those companions have circumplanetary disks. We use the VISIR instrument and its upgrade NEAR on the VLT to take new mid-infrared images of five (pre-)transition disks and one circumstellar disk with proposed planets and obtain the deepest resolved mid-infrared observations to date in order to put new constraints on the sizes of the emitting regions of the disks and the presence of possible companions. We derotate and stack the data to find the disk properties. Where available we compare the data to ProDiMo (Protoplanetary Disk Model) radiation thermo-chemical models to achieve a deeper understanding of the underlying physical processes within the disks. We apply the circularised PSF subtraction method to find upper limits on the fluxes of possible companions and model companions with circumplanetary disks. We resolve three of the six disks and calculate position angles, inclinations and (upper limits to) sizes of emission regions in the disks, improving upper limits on two of the unresolved disks. In all cases the majority of the mid-IR emission comes from small inner disks or the hot inner rims of outer disks. We refine the existing ProDiMo HD 100546 model SED fit in the mid-IR by increasing the PAH abundance relative to the ISM, adopting coronene as the representative PAH, and increase the outer cavity radius to 22.3 AU. We produce flux estimates for putative planetary-mass companions and circumplanetary disks, ruling out the presence of planetary-mass companions with $L > 0.0028 L_{odot}$ for $a > 180$ AU in the HD 100546 system. Upper limits of 0.5 mJy-30 mJy are obtained at 8 $mu$m-12 $mu$m for potential companions in the different disks.



قيم البحث

اقرأ أيضاً

The presence of dusty debris around main sequence stars denotes the existence of planetary systems. Such debris disks are often identified by the presence of excess continuum emission at infrared and (sub-)millimetre wavelengths, with measurements at longer wavelengths tracing larger and cooler dust grains. The exponent of the slope of the disk emission at sub-millimetre wavelengths, `q, defines the size distribution of dust grains in the disk. This size distribution is a function of the rigid strength of the dust producing parent planetesimals. As part of the survey `PLAnetesimals around TYpical Pre-main seqUence Stars (PLATYPUS) we observed six debris disks at 9-mm using the Australian Telescope Compact Array. We obtain marginal (~3-sigma) detections of three targets: HD 105, HD 61005, and HD 131835. Upper limits for the three remaining disks, HD20807, HD109573, and HD109085, provide further constraint of the (sub-)millimetre slope of their spectral energy distributions. The values of q (or their limits) derived from our observations are all smaller than the oft-assumed steady state collisional cascade model (q = 3.5), but lie well within the theoretically expected range for debris disks q ~ 3 to 4. The measured q values for our targets are all < 3.3, consistent with both collisional modelling results and theoretical predictions for parent planetesimal bodies being `rubble piles held together loosely by their self-gravity.
We present new determinations of disk surface density, independent of an assumed dust opacity, for a sample of 7 bright, diverse protoplanetary disks using measurements of disk dust lines. We develop a robust method for determining the location of du st lines by modeling disk interferometric visibilities at multiple wavelengths. The disks in our sample have newly derived masses that are 9-27% of their host stellar mass, substantially larger than the minimum mass solar nebula. All are stable to gravitational collapse except for one which approaches the limit of Toomre-Q stability. Our mass estimates are 2-15 times larger than estimates from integrated optically thin dust emission. We derive depleted dust-to-gas ratios with typical values of ~$10^{-3}$ in the outer disk. Using coagulation models we derive dust surface density profiles that are consistent with millimeter dust observations. In these models, the disks formed with an initial dust mass that is a factor of ~10 greater than is presently observed. Of the three disks in our sample with resolved CO line emission, the masses of HD 163296, AS 209, and TW Hya are roughly 3, 115, and 40 times more massive than estimates from CO respectively. This range indicates that CO depletion is not uniform across different disks and that dust is a more robust tracer of total disk mass. Our method of determining surface density using dust lines is robust even if particles form as aggregates and is useful even in the presence of dust substructure caused by pressure traps. The low Toomre-Q values observed in this sample indicate that at least some disks do not accrete efficiently.
We aim to understand the effect of stellar evolution on the evolution of protoplanetary disks. We focus in particular on the disk evolution around intermediate-mass (IM) stars, which evolve more rapidly than low-mass ones. We numerically solve the lo ng-term evolution of disks around 0.5-5 solar-mass stars considering viscous accretion and photoevaporation (PE) driven by stellar far-ultraviolet (FUV), extreme-ultraviolet (EUV), and X-ray emission. We also take stellar evolution into account and consider the time evolution of the PE rate. We find that the FUV, EUV, and X-ray luminosities of IM stars evolve by orders of magnitude within a few Myr along with the time evolution of stellar structure, stellar effective temperature, or accretion rate. Therefore, the PE rate also evolves with time by orders of magnitude, and we conclude that stellar evolution is crucial for the disk evolution around IM stars.
We have performed mid-infrared imaging of Barnards Star, one of the nearest stars to the Sun, using CanariCam on the 10.4 m Gran Telescopio Canarias. We aim to investigate an area within 1-10 arcsec separations, which for the 1.83 pc distance of the star translates to projected orbital separations of 1.8-18 AU (P > 12 yr), which have not been explored yet with astrometry or radial velocity programs. It is therefore an opportunity to enter the domain of distances where most giant planets are expected to form. We performed deep imaging in the N-band window (Si-2 filter, 8.7 {mu}m) reaching a 3{sigma} detection limit of 0.85+/-0.18 mJy and angular resolution of 0.24 arcsec, close to the diffraction limit of the telescope at this wavelength. A total of 80 min on-source integration time data were collected and combined for the deepest image. We achieved a dynamical range of 8.0+/-0.1 mag in the 8.7 {mu}m band, at angular separations from ~2 to 10 arcsec and of ~6-8 mag at 1-2 arcsec. No additional sources were found. Our detectability limits provide further constraints to the presence of substellar companions of the Barnards Star. According to solar metallicity evolutionary models, we can exclude companions of masses larger than 15 MJup (Teff > 400 K), ages of a few Gyr, and located in ~3.6-18 AU orbits with a 3{sigma} confidence level. This minimum mass is approximately 5 MJup smaller than any previous imaging survey that explored the surroundings of Barnards Star could restrict.
Near-IR polarimetric images of protoplanetary disks enable us to characterize substructures that might be due to the interaction with (forming) planets. The available census is strongly biased toward massive disks around old stars, however. The DARTT S program aims at alleviating this bias by imaging a large number of T Tauri stars with diverse properties. In this work, we present new SPHERE images of 21 circumstellar disks, which is the largest sample released to date. The targets of this work are significantly younger than those published thus far with polarimetric near-IR (NIR) imaging. Scattered light is unambiguously resolved in 11 targets, and some polarized unresolved signal is detected in 3 additional sources. Some disk substructures are detected. However, the paucity of spirals and shadows from this sample reinforces the trend according to which these NIR features are associated with Herbig stars, either because they are older or more massive. Furthermore, disk rings that are apparent in ALMA observations of some targets do not appear to have corresponding detections with SPHERE. Inner cavities larger than 15 au are also absent from our images, even though they are expected from the spectral energy distribution. On the other hand, 3 objects show extended filaments at larger scale that are indicative of strong interaction with the surrounding medium. All but one of the undetected disks are best explained by their limited size (less than 20 au), and the high occurrence of stellar companions in these sources suggests an important role in limiting the disk size. One undetected disk is massive and very large at millimeter wavelengths, implying that it is self-shadowed in the NIR. This work paves the way toward a more complete and less biased sample of scattered-light observations, which is required to interpret how disk features evolve throughout the disk lifetime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا