ﻻ يوجد ملخص باللغة العربية
Most ions lack the fast, cycling transitions that are necessary for direct laser cooling. In most cases, they can still be cooled sympathetically through their Coulomb interaction with a second, coolable ion species confined in the same potential. If the charge-to-mass ratios of the two ion types are too mismatched, the cooling of certain motional degrees of freedom becomes difficult. This limits both the achievable fidelity of quantum gates and the spectroscopic accuracy. Here we introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes. We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$^{+}$-Ar$^{13+}$ mixed Coulomb crystal close to their zero-point energies, despite the weak coupling between the ions. We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200~mathrm{mu K}$ in each of the two modes, corresponding to a residual mean motional phonon number of $langle n rangle lesssim 0.4$. Combined with the lowest observed electric field noise in a radiofrequency ion trap, these values enable an optical clock based on a highly charged ion with fractional systematic uncertainty below the $10^{-18}$ level. Our scheme is also applicable to (anti-)protons, molecular ions, macroscopic charged particles, and other highly charged ion species, enabling reliable preparation of their motional quantum ground states in traps.
There are well-known protocols for performing CNOT quantum logic with qubits coupled by particular high-symmetry (Ising or Heisenberg) interactions. However, many architectures being considered for quantum computation involve qubits or qubits and res
A quantum theory of cooling of a mechanical oscillator by radiation pressure-induced dynamical back-action is developed, which is analogous to sideband cooling of trapped ions. We find that final occupancies well below unity can be attained when the
We demonstrate ground-state cooling of a trapped ion using radio-frequency (RF) radiation. This is a powerful tool for the implementation of quantum operations, where RF or microwave radiation instead of lasers is used for motional quantum state engi
The ground state entanglement of the system, both in discrete-time and continuous-time cases, is quantified through the linear entropy. The result shows that the entanglement increases as the interaction between the particles increases in both time s
We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. Th