ترغب بنشر مسار تعليمي؟ اضغط هنا

It was all for nothing: sharp phase transitions for noiseless discrete channels

78   0   0.0 ( 0 )
 نشر من قبل Ilias Zadik
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish a phase transition known as the all-or-nothing phenomenon for noiseless discrete channels. This class of models includes the Bernoulli group testing model and the planted Gaussian perceptron model. Previously, the existence of the all-or-nothing phenomenon for such models was only known in a limited range of parameters. Our work extends the results to all signals with arbitrary sublinear sparsity. Over the past several years, the all-or-nothing phenomenon has been established in various models as an outcome of two seemingly disjoint results: one positive result establishing the all half of all-or-nothing, and one impossibility result establishing the nothing half. Our main technique in the present work is to show that for noiseless discrete channels, the all half implies the nothing half, that is a proof of all can be turned into a proof of nothing. Since the all half can often be proven by straightforward means -- for instance, by the first-moment method -- our equivalence gives a powerful and general approach towards establishing the existence of this phenomenon in other contexts.

قيم البحث

اقرأ أيضاً

We study the statistical problem of estimating a rank-one sparse tensor corrupted by additive Gaussian noise, a model also known as sparse tensor PCA. We show that for Bernoulli and Bernoulli-Rademacher distributed signals and emph{for all} sparsity levels which are sublinear in the dimension of the signal, the sparse tensor PCA model exhibits a phase transition called the emph{all-or-nothing phenomenon}. This is the property that for some signal-to-noise ratio (SNR) $mathrm{SNR_c}$ and any fixed $epsilon>0$, if the SNR of the model is below $left(1-epsilonright)mathrm{SNR_c}$, then it is impossible to achieve any arbitrarily small constant correlation with the hidden signal, while if the SNR is above $left(1+epsilon right)mathrm{SNR_c}$, then it is possible to achieve almost perfect correlation with the hidden signal. The all-or-nothing phenomenon was initially established in the context of sparse linear regression, and over the last year also in the context of sparse 2-tensor (matrix) PCA, Bernoulli group testing, and generalized linear models. Our results follow from a more general result showing that for any Gaussian additive model with a discrete uniform prior, the all-or-nothing phenomenon follows as a direct outcome of an appropriately defined near-orthogonality property of the support of the prior distribution.
We consider the linear regression problem of estimating a $p$-dimensional vector $beta$ from $n$ observations $Y = X beta + W$, where $beta_j stackrel{text{i.i.d.}}{sim} pi$ for a real-valued distribution $pi$ with zero mean and unit variance, $X_{ij } stackrel{text{i.i.d.}}{sim} mathcal{N}(0,1)$, and $W_istackrel{text{i.i.d.}}{sim} mathcal{N}(0, sigma^2)$. In the asymptotic regime where $n/p to delta$ and $ p/ sigma^2 to mathsf{snr}$ for two fixed constants $delta, mathsf{snr}in (0, infty)$ as $p to infty$, the limiting (normalized) minimum mean-squared error (MMSE) has been characterized by the MMSE of an associated single-letter (additive Gaussian scalar) channel. In this paper, we show that if the MMSE function of the single-letter channel converges to a step function, then the limiting MMSE of estimating $beta$ in the linear regression problem converges to a step function which jumps from $1$ to $0$ at a critical threshold. Moreover, we establish that the limiting mean-squared error of the (MSE-optimal) approximate message passing algorithm also converges to a step function with a larger threshold, providing evidence for the presence of a computational-statistical gap between the two thresholds.
163 - Yury Polyanskiy , Yihong Wu 2021
We consider the classical problems of estimating the mean of an $n$-dimensional normally (with identity covariance matrix) or Poisson distributed vector under the squared loss. In a Bayesian setting the optimal estimator is given by the prior-depende nt conditional mean. In a frequentist setting various shrinkage methods were developed over the last century. The framework of empirical Bayes, put forth by Robbins (1956), combines Bayesian and frequentist mindsets by postulating that the parameters are independent but with an unknown prior and aims to use a fully data-driven estimator to compete with the Bayesian oracle that knows the true prior. The central figure of merit is the regret, namely, the total excess risk over the Bayes risk in the worst case (over the priors). Although this paradigm was introduced more than 60 years ago, little is known about the asymptotic scaling of the optimal regret in the nonparametric setting. We show that for the Poisson model with compactly supported and subexponential priors, the optimal regret scales as $Theta((frac{log n}{loglog n})^2)$ and $Theta(log^3 n)$, respectively, both attained by the original estimator of Robbins. For the normal mean model, the regret is shown to be at least $Omega((frac{log n}{loglog n})^2)$ and $Omega(log^2 n)$ for compactly supported and subgaussian priors, respectively, the former of which resolves the conjecture of Singh (1979) on the impossibility of achieving bounded regret; before this work, the best regret lower bound was $Omega(1)$. In addition to the empirical Bayes setting, these results are shown to hold in the compound setting where the parameters are deterministic. As a side application, the construction in this paper also leads to improved or new lower bounds for density estimation of Gaussian and Poisson mixtures.
139 - Tomohiro Nishiyama 2019
The variance and the entropy power of a continuous random variable are bounded from below by the reciprocal of its Fisher information through the Cram{e}r-Rao bound and the Stams inequality respectively. In this note, we introduce the Fisher informat ion for discrete random variables and derive the discrete Cram{e}r-Rao-type bound and the discrete Stams inequality.
This paper studies the problem of recovering the hidden vertex correspondence between two edge-correlated random graphs. We focus on the Gaussian model where the two graphs are complete graphs with correlated Gaussian weights and the ErdH{o}s-Renyi m odel where the two graphs are subsampled from a common parent ErdH{o}s-Renyi graph $mathcal{G}(n,p)$. For dense graphs with $p=n^{-o(1)}$, we prove that there exists a sharp threshold, above which one can correctly match all but a vanishing fraction of vertices and below which correctly matching any positive fraction is impossible, a phenomenon known as the all-or-nothing phase transition. Even more strikingly, in the Gaussian setting, above the threshold all vertices can be exactly matched with high probability. In contrast, for sparse ErdH{o}s-Renyi graphs with $p=n^{-Theta(1)}$, we show that the all-or-nothing phenomenon no longer holds and we determine the thresholds up to a constant factor. Along the way, we also derive the sharp threshold for exact recovery, sharpening the existing results in ErdH{o}s-Renyi graphs. The proof of the negative results builds upon a tight characterization of the mutual information based on the truncated second-moment computation and an area theorem that relates the mutual information to the integral of the reconstruction error. The positive results follows from a tight analysis of the maximum likelihood estimator that takes into account the cycle structure of the induced permutation on the edges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا