ﻻ يوجد ملخص باللغة العربية
A novel observable measuring the $C!P$ asymmetry in multi-body decays of heavy mesons, which is called the forward-backward asymmetry induced $C!P$ asymmetry (FBI-$C!P$A), $A_{CP}^{FB}$, is introduced. This observable has the dual advantages that 1) it can isolate the $C!P$ asymmetry associated with the interference of the $S$- and $P$-wave amplitude from that associated with the $S$- or $P$-wave amplitude alone; 2) it can effectively almost double the statistics comparing to the conventionally defined regional $C!P$ asymmetry. We also suggest to perform the measurements of FBI-$C!P$A in some three-body decay channels of charm and beauty mesons.
Since the discovery of CP violation more than 5 decades ago, this phenomenon is still attracting a lot of interest. Among the many fascinating aspects of this subject, this review is dedicated to direct CP violation in non-leptonic decays. The advanc
Precision tests of the Kobayashi-Maskawa model of CP violation are discussed, pointing out possible signatures for other sources of CP violation and for new flavor-changing operators. The current status of the most accurate tests is summarized.
A search for charge-parity ($C!P$) violation in $D^0 to K^- K^+$ and $D^0 to pi^- pi^+$ decays is reported, using $pp$ collision data corresponding to an integrated luminosity of 6 $mathrm{fb}^{-1}$ collected at a center-of-mass energy of 13 TeV with
Beauty baryons are being observed in large numbers in the LHCb detector. The rich kinematic distributions of their multibody decays are therefore becoming accessible and provide us with new opportunities to search for CP violation. We analyse the ang
Model-independent techniques for CP violation searches in multi-body charm decays are discussed. Examples of recent analyses from BaBar and LHCb are used to illustrate the experimental challenges involved.