ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the following system $$left{begin{array}{ll} n_t+ucdot abla n&=Delta n- ablacdot(nmathcal{S}(| abla c|^2) abla c)-nm, c_t+ucdot abla c&=Delta c-c+m, m_t+ucdot abla m&=Delta m-mn, u_t&=Delta u+ abla P+(n+m) ablaPhi,qquad ablacdot u=0 end{array}right.$$ which models the process of coral fertilization, in a smoothly three-dimensional bounded domain, where $mathcal{S}$ is a given function fulfilling $$|mathcal{S}(sigma)|leq K_{mathcal{S}}(1+sigma)^{-frac{theta}{2}},qquad sigmageq 0$$ with some $K_{mathcal{S}}>0.$ Based on conditional estimates of the quantity $c$ and the gradients thereof, a relatively compressed argument as compared to that proceeding in related precedents shows that if $$theta>0,$$ then for any initial data with proper regularity an associated initial-boundary problem under no-flux/no-flux/no-flux/Dirichlet boundary conditions admits a unique classical solution which is globally bounded, and which also enjoys the stabilization features in the sense that $$|n(cdot,t)-n_{infty}|_{L^{infty}(Omega)}+|c(cdot,t)-m_{infty}|_{W^{1,infty}(Omega)} +|m(cdot,t)-m_{infty}|_{W^{1,infty}(Omega)}+|u(cdot,t)|_{L^{infty}(Omega)}rightarrow0 quadtextrm{as}~trightarrow infty$$ with $n_{infty}:=frac{1}{|Omega|}left{int_{Omega}n_0-int_{Omega}m_0right}_{+}$ and $m_{infty}:=frac{1}{|Omega|}left{int_{Omega}m_0-int_{Omega}n_0right}_{+}.$
We are concerned with the Keller--Segel--Navier--Stokes system begin{equation*} left{ begin{array}{ll} rho_t+ucdot ablarho=Deltarho- ablacdot(rho mathcal{S}(x,rho,c) abla c)-rho m, &!! (x,t)in Omegatimes (0,T), m_t+ucdot abla m=Delta m-rho m, &!! (x
This paper investigates an incompressible chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion begin{eqnarray} left{begin{array}{lll} n_t+ucdot abla n= ablacdot(| abla n|^{p-2} abla n)- ablacdot(nchi(c) abla c),& xinOmega, t>0, c_t+ucdot
In this paper, we study the time periodic problem to a three-dimensional chemotaxis-Stokes model with porous medium diffusion $Delta n^m$ and inhomogeneous mixed boundary conditions. By using a double-level approximation method and some iterative tec
In this paper, we study the consumption-chemotaxis-Stokes model with porous medium slow diffusion in a three dimensional bounded domain with zero-flux boundary conditions and no-slip boundary condition. In recent ten years, many efforts have been mad
The chemotaxis--Navier--Stokes system begin{equation*}label{0.1} left{begin{array}{ll} n_t+ucdot abla n=triangle n-chi ablacdotp left(displaystylefrac n {c} abla cright)+n(r-mu n), c_t+ucdot abla c=triangle c-nc, u_t+ (ucdot abla) u=Delta