ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of flux limitation on large time behavior in a three-dimensional chemotaxis-Stokes system modeling coral fertilization

62   0   0.0 ( 0 )
 نشر من قبل Ji Liu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Ji Liu




اسأل ChatGPT حول البحث

In this paper, we consider the following system $$left{begin{array}{ll} n_t+ucdot abla n&=Delta n- ablacdot(nmathcal{S}(| abla c|^2) abla c)-nm, c_t+ucdot abla c&=Delta c-c+m, m_t+ucdot abla m&=Delta m-mn, u_t&=Delta u+ abla P+(n+m) ablaPhi,qquad ablacdot u=0 end{array}right.$$ which models the process of coral fertilization, in a smoothly three-dimensional bounded domain, where $mathcal{S}$ is a given function fulfilling $$|mathcal{S}(sigma)|leq K_{mathcal{S}}(1+sigma)^{-frac{theta}{2}},qquad sigmageq 0$$ with some $K_{mathcal{S}}>0.$ Based on conditional estimates of the quantity $c$ and the gradients thereof, a relatively compressed argument as compared to that proceeding in related precedents shows that if $$theta>0,$$ then for any initial data with proper regularity an associated initial-boundary problem under no-flux/no-flux/no-flux/Dirichlet boundary conditions admits a unique classical solution which is globally bounded, and which also enjoys the stabilization features in the sense that $$|n(cdot,t)-n_{infty}|_{L^{infty}(Omega)}+|c(cdot,t)-m_{infty}|_{W^{1,infty}(Omega)} +|m(cdot,t)-m_{infty}|_{W^{1,infty}(Omega)}+|u(cdot,t)|_{L^{infty}(Omega)}rightarrow0 quadtextrm{as}~trightarrow infty$$ with $n_{infty}:=frac{1}{|Omega|}left{int_{Omega}n_0-int_{Omega}m_0right}_{+}$ and $m_{infty}:=frac{1}{|Omega|}left{int_{Omega}m_0-int_{Omega}n_0right}_{+}.$



قيم البحث

اقرأ أيضاً

We are concerned with the Keller--Segel--Navier--Stokes system begin{equation*} left{ begin{array}{ll} rho_t+ucdot ablarho=Deltarho- ablacdot(rho mathcal{S}(x,rho,c) abla c)-rho m, &!! (x,t)in Omegatimes (0,T), m_t+ucdot abla m=Delta m-rho m, &!! (x ,t)in Omegatimes (0,T), c_t+ucdot abla c=Delta c-c+m, & !! (x,t)in Omegatimes (0,T), u_t+ (ucdot abla) u=Delta u- abla P+(rho+m) ablaphi,quad ablacdot u=0, &!! (x,t)in Omegatimes (0,T) end{array}right. end{equation*} subject to the boundary condition $( ablarho-rho mathcal{S}(x,rho,c) abla c)cdot u!!=! abla mcdot u= abla ccdot u=0, u=0$ in a bounded smooth domain $Omegasubsetmathbb R^3$. It is shown that the corresponding problem admits a globally classical solution with exponential decay properties under the hypothesis that $mathcal{S}in C^2(overlineOmegatimes [0,infty)^2)^{3times 3}$ satisfies $|mathcal{S}(x,rho,c)|leq C_S $ for some $C_S>0$, and the initial data satisfy certain smallness conditions.
71 - Weirun Tao , Yuxiang Li 2018
This paper investigates an incompressible chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion begin{eqnarray} left{begin{array}{lll} n_t+ucdot abla n= ablacdot(| abla n|^{p-2} abla n)- ablacdot(nchi(c) abla c),& xinOmega, t>0, c_t+ucdot abla c=Delta c-nf(c),& xinOmega, t>0, u_t+(ucdot abla) u=Delta u+ abla P+n ablaPhi,& xinOmega, t>0, ablacdot u=0,& xinOmega, t>0 end{array}right. end{eqnarray} under homogeneous boundary conditions of Neumann type for $n$ and $c$, and of Dirichlet type for $u$ in a bounded convex domain $Omegasubset mathbb{R}^3$ with smooth boundary. Here, $Phiin W^{1,infty}(Omega)$, $0<chiin C^2([0,infty))$ and $0leq fin C^1([0,infty))$ with $f(0)=0$. It is proved that if $p>frac{32}{15}$ and under appropriate structural assumptions on $f$ and $chi$, for all sufficiently smooth initial data $(n_0,c_0,u_0)$ the model possesses at least one global weak solution.
252 - Hailong Ye , Chunhua Jin 2021
In this paper, we study the time periodic problem to a three-dimensional chemotaxis-Stokes model with porous medium diffusion $Delta n^m$ and inhomogeneous mixed boundary conditions. By using a double-level approximation method and some iterative tec hniques, we obtain the existence and time-space uniform boundedness of weak time periodic solutions for any $m>1$. Moreover, we improve the regularity for $mlefrac{4}{3}$ and show that the obtained periodic solutions are in fact strong periodic solutions.
301 - Chunhua Jin 2021
In this paper, we study the consumption-chemotaxis-Stokes model with porous medium slow diffusion in a three dimensional bounded domain with zero-flux boundary conditions and no-slip boundary condition. In recent ten years, many efforts have been mad e to find the global bounded solutions of chemotaxis-Stokes system in three dimensional space. Although some important progress has been carried out in some papers, as mentioned by some authors, the question of identifying an optimal condition on m ensuring global boundedness in the three-dimensional framework remains an open challenge. In the present paper, we put forward a new estimation technique, completely proved the existence of global bounded solutions for arbitrary slow diffusion case, and partially answered the open problem proposed by Winkler.
The chemotaxis--Navier--Stokes system begin{equation*}label{0.1} left{begin{array}{ll} n_t+ucdot abla n=triangle n-chi ablacdotp left(displaystylefrac n {c} abla cright)+n(r-mu n), c_t+ucdot abla c=triangle c-nc, u_t+ (ucdot abla) u=Delta u+ abla P+n ablaphi, ablacdot u=0, end{array}right. end{equation*} is considered in a bounded smooth domain $Omega subset mathbb{R}^2$, where $phiin W^{1,infty}(Omega)$, $chi>0$, $rin mathbb{R}$ and $mu> 0$ are given parameters. It is shown that there exists a value $mu_*(Omega,chi, r)geq 0$ such that whenever $ mu>mu_*(Omega,chi, r)$, the global-in-time classical solution to the system is uniformly bounded with respect to $xin Omega$. Moreover, for the case $r>0$, $(n,c,frac {| abla c|}c,u)$ converges to $(frac r mu,0,0,0)$ in $L^infty(Omega)times L^infty(Omega)times L^p(Omega)times L^infty(Omega)$ for any $p>1$ exponentially as $trightarrow infty$, while in the case $r=0$, $(n,c,frac {| abla c|}c,u)$ converges to $(0,0,0,0)$ in $(L^infty(Omega))^4$ algebraically. To the best of our knowledge, these results provide the first precise information on the asymptotic profile of solutions in two dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا