ﻻ يوجد ملخص باللغة العربية
In this paper, we develop the theory of $mathbb{Z}_p$-index which has been introduced by Tsukamoto, Tsutaya and Yoshinaga. As an application, we show that given any positive number, there exists a dynamical system with mean dimension equal to such number such that it does not have the marker property.
We introduce an invariant, called mean rank, for any module M of the integral group ring of a discrete amenable group $Gamma$, as an analogue of the rank of an abelian group. It is shown that the mean dimension of the induced $Gamma$-action on the Po
In this paper, the existence conditions of nonuniform mean-square exponential dichotomy (NMS-ED) for a linear stochastic differential equation (SDE) are established. The difference of the conditions for the existence of a nonuniform dichotomy between
A classical result in thermodynamic formalism is that for uniformly hyperbolic systems, every Holder continuous potential has a unique equilibrium state. One proof of this fact is due to Rufus Bowen and uses the fact that such systems satisfy expansi
In this paper we relate the study of actions of discrete groups over connected manifolds to that of their orbit spaces seen as differentiable stacks. We show that the orbit stack of a discrete dynamical system on a simply connected manifold encodes t
Let $f$ be a partially hyperbolic diffeomorphism on a closed (i.e., compact and boundaryless) Riemannian manifold $M$ with a uniformly compact center foliation $mathcal{W}^{c}$. The relationship among topological entropy $h(f)$, entropy of the restri