ﻻ يوجد ملخص باللغة العربية
The entanglement wedge cross section (EWCS) is numerically investigated both statically and dynamically in a five-dimension AdS-Vaidya spacetime with Gauss-Bonnet (GB) corrections, focusing on two identical rectangular strips on the boundary. In the static case, EWCS arises as the GB coupling constant $alpha$ increasing, and disentangles at smaller separations between two strips for smaller $alpha$. For the dynamical case we observe that the monotonic relation between EWCS and $alpha$ holds but the two strips no longer disentangle monotonically. In the early stage of thermal quenching, when disentanglement occurs, the smaller $alpha$, the greater separations. As time evolving, two strips then disentangle at larger separations with larger $alpha$. Our results suggest that the higher order derivative corrections also have nontrivial effects on the EWCS, so do on the entanglement of purification in the dual boundary theory.
We derive dynamics of the entanglement wedge cross section from the reflected entropy for local operator quench states in the holographic CFT. By comparing between the reflected entropy and the mutual information in this dynamical setup, we argue tha
We study the entanglement wedge cross-section (EWCS) in holographic Aether gravity theory, a gravity theory with Lorentz symmetry breaking meanwhile keeping the general covariance intact. We find that only a limited parameter space is allowed to obta
We study the mixed state entanglement properties in two holographic axion models by examining the behavior of the entanglement wedge minimum cross section (EWCS), and comparing it with the holographic entanglement entropy (HEE) and mutual information
In this paper, we probe the effect of noncommutativity on the entanglement of purification in the holographic set up. We followed a systematic analytical approach in order to compute the holographic entanglement entropy corresponding to a strip like
We derive dynamics of the entanglement wedge cross section directly from the two-dimensional holographic CFTs with a local operator quench. This derivation is based on the reflected entropy, a correlation measure for mixed states. We further compare