ﻻ يوجد ملخص باللغة العربية
With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop Physics Beyond Colliders meets theory, held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results.
At the dawn of a new decade, particle physics faces the challenge of explaining the mystery of dark matter, the origin of matter over antimatter in the Universe, the apparent fine-tuning of the electro-weak scale, and many other aspects of fundamenta
The workshop on Parton Distributions and Lattice Calculations in the LHC era (PDFLattice2017) was hosted at Balliol College, Oxford (UK), from 22$^{rm nd}$ to 24$^{rm th}$ March 2017. The workshop brought together the lattice-QCD and the global-fit p
This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the importa
Recent developments on tau detection technologies and the construction of high intensity neutrino beams open the possibility of a high precision search for non-standard {mu} - {tau} flavour transition with neutrinos at short distances. The MINSIS - M
We perform a phenomenological analysis of simplified models of light, feebly interacting particles (FIPs) that can provide a combined explanation of the anomalies in $bto s l^+ l ^-$ transitions at LHCb and the anomalous magnetic moment of the muon.