ترغب بنشر مسار تعليمي؟ اضغط هنا

Accretion Torque Reversals in GRO J1008-57 Revealed by Insight-HXMT

166   0   0.0 ( 0 )
 نشر من قبل Wei Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

GRO J1008-57, as a Be/X-ray transient pulsar, is considered to have the highest magnetic field in known neutron star X-ray binary systems. Observational data of the X-ray outbursts in GRO J1008-57 from 2017 to 2020 were collected by the Insight-HXMT satellite. In this work, the spin period of the neutron star in GRO J1008-57 was determined to be about 93.28 seconds in August 2017, 93.22 seconds in February 2018, 93.25 seconds in June 2019 and 93.14 seconds in June 2020. GRO J1008-57 evolved in the spin-up process with a mean rate of $-(2.10pm 0.05)times$10$^{-4}$ s/d from 2009 -- 2018, and turned into a spin down process with a rate of $(6.7pm 0.6)times$10$^{-5}$ s/d from Feb 2018 to June 2019. During the type II outburst of 2020, GRO J1008-57 had the spin-up torque again. During the torque reversals, the pulse profiles and continuum X-ray spectra did not change significantly, and the cyclotron resonant scattering feature around 80 keV was only detected during the outbursts in 2017 and 2020. Based on the observed mean spin-up rate, we estimated the inner accretion disk radius in GRO J1008-57 (about 1 - 2 times of the Alfv{e}n radius) by comparing different accretion torque models of magnetic neutron stars. During the spin-down process, the magnetic torque should dominate over the matter accreting inflow torque, and we constrained the surface dipole magnetic field $Bgeq 6times 10^{12}$ G for the neutron star in GRO J1008-57, which is consistent with the magnetic field strength obtained by cyclotron line centroid energy.

قيم البحث

اقرأ أيضاً

122 - X. Chen , W. Wang , Y. M. Tang 2021
Cyclotron line scattering features are detected in a few tens of X-ray pulsars (XRPs) and used as direct indicators of a strong magnetic field at the surface of accreting neutron stars (NSs). In a few cases, cyclotron lines are known to be variable w ith accretion luminosity of XRPs. It is accepted that the observed variations of cyclotron line scattering features are related to variations of geometry and dynamics of accretion flow above the magnetic poles of a NS. A positive correlation between the line centroid energy and luminosity is typical for sub-critical XRPs, where the accretion results in hot spots at the magnetic poles. The negative correlation was proposed to be a specific feature of bright super-critical XRPs, where radiation pressure supports accretion columns above the stellar surface. Cyclotron line in spectra of Be-transient X-ray pulsar GRO J1008-57 is detected at energies from $sim 75 -90$ keV, the highest observed energy of cyclotron line feature in XRPs. We report the peculiar relation of cyclotron line centroid energies with luminosity in GRO J1008-57 during the Type II outburst in August 2017 observed by Insight-HXMT. The cyclotron line energy was detected to be negatively correlated with the luminosity at $3.2times 10^{37},ergs<L<4.2times 10^{37},ergs$, and positively correlated at $Lgtrsim 5times 10^{37},ergs$. We speculate that the observed peculiar behavior of a cyclotron line would be due to variations of accretion channel geometry.
129 - M. Y. Ge , L. Ji , S. N. Zhang 2020
We report on the observation of the accreting pulsar GRO J1008-57 performed by Insight-HXMT at the peak of the sources 2017 outburst. Pulsations are detected with a spin period of 93.283(1) s. The pulse profile shows double peaks at soft X-rays, and only one peak above 20 keV. The spectrum is well described by the phenomenological models of X-ray pulsars. A cyclotron resonant scattering feature is detected with very high statistical significance at a centroid energy of $E_{rm cyc}=90.32_{-0.28}^{+0.32}$ keV, for the reference continuum and line models, HIGHECUT and GABS respectively. Detection is very robust with respect to different continuum models. The line energy is significantly higher than what suggested from previous observations, which provided very marginal evidence for the line. This establishes a new record for the centroid energy of a fundamental cyclotron resonant scattering feature observed in accreting pulsars. We also discuss the accretion regime of the source during the Insight-HXMT observation.
We report on analysis of observations of the bright transient X-ray pulsar src obtained during its 2017-2018 giant outburst with Insight-HXMT, emph{NuSTAR}, and textit{Swift} observatories. We focus on the discovery of a sharp state transition of the timing and spectral properties of the source at super-Eddington accretion rates, which we associate with the transition of the accretion disk to a radiation pressure dominated (RPD) state, the first ever directly observed for magnetized neutron star. This transition occurs at slightly higher luminosity compared to already reported transition of the source from sub- to super-critical accretion regime associate with onset of an accretion column. We argue that this scenario can only be realized for comparatively weakly magnetized neutron star, not dissimilar to other ultra-luminous X-ray pulsars (ULPs), which accrete at similar rates. Further evidence for this conclusion is provided by the non-detection of the transition to the propeller state in quiescence which strongly implies compact magnetosphere and thus rules out magnetar-like fields.
123 - A. Lutovinov 2021
We report results of the first broadband observation of the transient X-ray pulsar GRO J1008-57 performed in the quiescent state. Observations were conducted quasi-simultaneously with the Mikhail Pavlinsky ART-XC telescope on board SRG and NuSTAR rig ht before the beginning of a Type I outburst. GRO J1008-57 was detected in the state with the lowest observed luminosity around several $times 10^{34}$ erg s$^{-1}$ and consequently accreting from the cold disk. Timing analysis allowed to significantly detect pulsations during this state for the first time. The observed pulsed fraction of about 20% is, however, almost three times lower than in brighter states when the accretion proceeds through the standard disk. We traced the evolution of the broadband spectrum of the source on a scale of three orders of magnitude in luminosity and found that at the lowest luminosities the spectrum transforms into the double-hump structure similarly to other X-ray pulsars accreting at low luminosities (X Persei, GX 304-1, A0535+262) reinforcing conclusion that this spectral shape is typical for these objects.
We report on the firm detection of a cyclotron resonance scattering feature (CRSF) in the X-ray spectrum of the Be X-ray binary pulsar, GRO J1008-57, achieved by the Suzaku Hard X-ray Detector during a giant outburst which was detected by the MAXI Ga s Slit Camera in 2012 November. The Suzaku observation was carried out on 2012 November 20, outburst maximum when the X-ray flux reached $sim 0.45$ Crab in 4-10 keV, which corresponds to a luminosity of $1.1 times 10^{38}$ erg s$^{-1}$ in 0.5--100 keV at 5.8 kpc. The obtained broadband X-ray spectrum from 0.5 keV to 118 keV revealed a significant absorption feature, considered as the fundamental CRSF, at $sim 76$ keV. This unambiguously reconfirm the previously suggested $sim$ 80 keV spectral feature in GRO J1008$-$57. The implied surface magnetic field, $6.6times 10^{12}$ G, is the highest among binary X-ray pulsars from which CRSFs have ever been detected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا