ﻻ يوجد ملخص باللغة العربية
We study the role of gravitational waves (GW) in the heat death of the universe. Due to the GW emission, in a very long period, dynamical systems in the universe suffer from persistent mechanical energy dissipation, evolving to a state of universal rest and death. With N-body simulations, we adopt a simple yet representative scheme to calculate the energy loss due to the GW emission. For current dark matter systems with mass $sim10^{12}-10^{15} M_odot$, we estimate their GW emission timescale as $sim10^{19}-10^{25}$ years. This timescale is significantly larger than any baryon processes in the universe, but still $sim10^{80}$ times shorter than that of the Hawking radiation. We stress that our analysis could be invalid due to many unknowns such as the dynamical chaos, the quadrupole momentum of halos, the angular momentum loss, the dynamic friction, the central black hole accretion, the dark matter decays or annihilations, the property of dark energy and the future evolution of the universe.
Part of a review paper entitled Gravitational wave astronomy: the current status., appeared in Science China Physics, Mechanics & Astronomy 58.12 (2015): 1-41.
We do a complete calculation of the stochastic gravitational wave background to be expected from cosmic strings. We start from a population of string loops taken from simulations, smooth these by Lorentzian convolution as a model of gravitational bac
In this work, we study the prospect of detecting the stochastic gravitational-wave background with the TianQin observatory. We consider both astrophysical-origin and cosmological-origin sources, including stellar-mass binary black holes, binary neutr
Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the proper
We present a new signature by which to one could potentially discriminate between a spectrum of gravitational radiation generated by a self-ordering scalar field vs that of inflation, specifically a comparison of the magnitude of a flat spectrum at f