ترغب بنشر مسار تعليمي؟ اضغط هنا

Finding Signs of Life in Transit: High-resolution Transmission Spectra of Earth-like Planets around FGKM Host Stars

69   0   0.0 ( 0 )
 نشر من قبل Lisa Kaltenegger
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thousands of transiting exoplanets have already been detected orbiting a wide range of host stars, including the first planets that could potentially be similar to Earth. The upcoming Extremely Large Telescopes and the James Webb Space Telescope will enable the first searches for signatures of life in transiting exoplanet atmospheres. Here, we quantify the strength of spectral features in transit that could indicate a biosphere similar to the modern Earth on exoplanets orbiting a wide grid of host stars (F0 to M8) with effective temperatures between 2,500 and 7,000K: transit depths vary between about 6,000ppm (M8 host) to 30 ppm (F0 host) due to the different sizes of the host stars. CO2 possesses the strongest spectral features in transit between 0.4 and 20microns. The atmospheric biosignature pairs O2+CH4 and O3+CH4 - which identify Earth as a living planet - are most prominent for Sun-like and cooler host stars in transit spectra of modern Earth analogs. Assessing biosignatures and water on such planets orbiting hotter stars than the Sun will be extremely challenging even for high-resolution observations. All high-resolution transit spectra and model profiles are available online: they provide a tool for observers to prioritize exoplanets for transmission spectroscopy, test atmospheric retrieval algorithms, and optimize observing strategies to find life in the cosmos. In the search for life in the cosmos, transiting planets provide the first opportunity to discover whether or not we are alone, with this database as one of the keys to optimize the search strategies.

قيم البحث

اقرأ أيضاً

In the near future we will have ground- and space-based telescopes that are designed to observe and characterize Earth-like planets. While attention is focused on exoplanets orbiting main sequence stars, more than 150 exoplanets have already been det ected orbiting red giants, opening the intriguing question of what rocky worlds orbiting in the habitable zone of red giants would be like and how to characterize them. We model reflection and emission spectra of Earth-like planets orbiting in the habitable zone of red giant hosts with surface temperatures between 5200 and 3900 K at the Earth-equivalent distance, as well as model planet spectra throughout the evolution of their hosts. We present a high-resolution spectral database of Earth-like planets orbiting in the red giant habitable zone from the visible to infrared, to assess the feasibility of characterizing atmospheric features including biosignatures for such planets with upcoming ground- and space-based telescopes such as the Extremely Large Telescopes and the James Webb Space Telescope.
In the search for life in the cosmos, NASAs Transiting Exoplanet Survey Satellite (TESS) mission has already monitored about 74% of the sky for transiting extrasolar planets, including potentially habitable worlds. However, TESS only observed a fract ion of the stars long enough to be able to find planets like Earth. We use the primary mission data - the first two years of observations - and identify 4,239 stars within 210pc that TESS observed long enough to see 3 transits of an exoplanet that receives similar irradiation to Earth: 738 of these stars are located within 30pc. We provide reliable stellar parameters from the TESS Input Catalog that incorporates Gaia DR2 and also calculate the transit depth and radial velocity semi-amplitude for an Earth-analog planet. Of the 4,239 stars in the Revised TESS HZ Catalog, 9 are known exoplanet hosts - GJ 1061, GJ 1132, GJ 3512, GJ 685, Kepler-42, LHS 1815, L98-59, RR Cae, TOI 700 - around which TESS could identify additional Earth-like planetary companions. 37 additional stars host yet unconfirmed TESS Objects of Interest: three of these orbit in the habitable zone - TOI 203, TOI 715, and TOI 2298. For a subset of 614 of the 4,239 stars, TESS has observed the star long enough to be able to observe planets throughout the full temperate, habitable zone out to the equivalent of Mars orbit. Thus, the Revised TESS Habitable Zone Catalog provides a tool for observers to prioritize stars for follow-up observation to discover life in the cosmos. These stars are the best path towards the discovery of habitable planets using the TESS mission data.
The search for life in the universe is currently focused on Earth-analog planets. However, we should be prepared to find a diversity of terrestrial exoplanets not only in terms of host star but also in terms of surface environment. Simulated high-res olution spectra of habitable planets covering a wide parameter space are essential in training retrieval tools, optimizing observing strategies, and interpreting upcoming observations. Ground-based extremely large telescopes like ELT, GMT, and TMT; and future space-based mission concepts like Origins, HabEx, and LUVOIR are designed to have the capability of characterizing a variety of potentially habitable worlds. Some of these telescopes will use high precision radial velocity techniques to obtain the required high-resolution spectra ($Rapprox100,000$) needed to characterize potentially habitable exoplanets. Here we present a database of high-resolution (0.01 cm$^{-1}$) reflection and emission spectra for simulated exoplanets with a wide range of surfaces, receiving similar irradiation as Earth around 12 different host stars from F0 to K7. Depending on surface type and host star, we show differences in spectral feature strength as well as overall reflectance, emission, and star to planet contrast ratio of terrestrial planets in the Habitable zone of their host stars. Accounting for the wavelength-dependent interaction of the stellar flux and the surface will help identify the best targets for upcoming spectral observations in the visible and infrared. All of our spectra and model profiles are available online.
Upcoming NASA astrophysics missions such as the James Webb Space Telescope will search for signs of life on planets transiting nearby stars. Doing so will require co-adding dozens of transmission spectra to build up sufficient signal to noise while s imultaneously accounting for challenging systematic effects such as surface/weather variability, atmospheric refraction, and stellar activity. To determine the magnitude and impacts of both stellar and planet variability on measured transmission spectra, we must assess the feasibility of stacking multiple transmission spectra of exo-Earths around their host stars. Using our own solar system, we can determine if current methodologies are sufficient to detect signs of life in Earths atmosphere and measure the abundance of habitability indicators, such as H2O and CO2, and biosignature pairs, such as O2 and CH4. We assess the impact on transmission spectra of Earth transiting across the Sun from solar and planetary variability and identify remaining unknowns for understanding exoplanet transmission spectra. We conclude that a satellite observing Earth transits across the Sun from beyond L2 is necessary to address these long-standing concerns about the reliability of co-adding planet spectra at UV, optical, and infrared wavelengths from multiple transits in the face of relatively large astrophysical systematics.
190 - M. Montalto 2020
In this work, we present the analysis of 976 814 FGKM dwarf and sub-giant stars in the TESS Full Frame Images (FFIs) of the Southern ecliptic hemisphere. We present a new pipeline, DIAmante, developed to extract optimized, multi-sector photometry fro m TESS FFIs and a classifier, based on the Random Forest technique, trained to discriminate plausible transiting planetary candidates from common false positives. A new statistical model was developed to provide the probability of correct identification of the source of variability. We restricted the planet search to the stars located in the least crowded regions of the sky and identified 396 transiting planetary candidates among which 252 are new detections. The candidates radius distribution ranges between 1 R$rm_{oplus}$ and 2.6 R$rm_J$ with median value of 1 R$rm_J$ and the period distribution ranges between 0.25 days and 105 days with median value of 3.8 days. The sample contains four long period candidates (P>50 days) one of which is new and 64 candidates with periods between 10 and 50 days (42 new ones). In the small planet radius domain (R<4 R$rm_{oplus}$) we found 39 candidates among which 15 are new detections. Additionally, we present 15 single transit events (14 new ones), a new candidate multi-planetary system and a novel candidate around a known TOI. By using {it Gaia} dynamical constraints we found that 70 objects show evidence of binarity. We release a catalog of the objects we analyzed and the corresponding lightcurves and diagnostic figures through the MAST and ExoFOP portals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا