ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersion and the Speed-Limited Particle-in-Cell Algorithm

220   0   0.0 ( 0 )
 نشر من قبل Thomas Jenkins
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper discusses temporally continuous and discrete forms of the speed-limited particle-in-cell (SLPIC) method first treated by Werner et al. [Phys. Plasmas 25, 123512 (2018)]. The dispersion relation for a 1D1V electrostatic plasma whose fast particles are speed-limited is derived and analyzed. By examining the normal modes of this dispersion relation, we show that the imposed speed-limiting substantially reduces the frequency of fast electron plasma oscillations while preserving the correct physics of lower-frequency plasma dynamics (e.g. ion acoustic wave dispersion and damping). We then demonstrate how the timestep constraints of conventional electrostatic particle-in-cell methods are relaxed by the speed-limiting approach, thus enabling larger timesteps and faster simulations. These results indicate that the SLPIC method is a fast, accurate, and powerful technique for modeling plasmas wherein electron kinetic behavior is nontrivial (such that a fluid/Boltzmann representation for electrons is inadequate) but evolution is on ion timescales.



قيم البحث

اقرأ أيضاً

Upon inclusion of collisions, the speed-limited particle-in-cell (SLPIC) simulation method successfully computed the Paschen curve for argon. The simulations modelled an electron cascade across an argon-filled capacitor, including electron-neutral io nization, electron-neutral elastic collisions, electron-neutral excitation, and ion-induced secondary-electron emission. In electrical breakdown, the timescale difference between ion and electron motion makes traditional particle-in-cell (PIC) methods computationally slow. To decrease this timescale difference and speed up computation, we used SLPIC, a time-domain algorithm that limits the speed of the fastest electrons in the simulation. The SLPIC algorithm facilitates a straightforward, fully-kinetic treatment of dynamics, secondary emission, and collisions. SLPIC was as accurate as PIC, but ran up to 200 times faster. SLPIC accurately computed the Paschen curve for argon over three orders of magnitude in pressure.
We propose a spectral Particle-In-Cell (PIC) algorithm that is based on the combination of a Hankel transform and a Fourier transform. For physical problems that have close-to-cylindrical symmetry, this algorithm can be much faster than full 3D PIC a lgorithms. In addition, unlike standard finite-difference PIC codes, the proposed algorithm is free of numerical dispersion. This algorithm is benchmarked in several situations that are of interest for laser-plasma interactions. These benchmarks show that it avoids a number of numerical artifacts, that would otherwise affect the physics in a standard PIC algorithm - including the zero-order numerical Cherenkov effect.
In recent years, several gauge-symmetric particle-in-cell (PIC) methods have been developed whose simulations of particles and electromagnetic fields exactly conserve charge. While it is rightly observed that these methods gauge symmetry gives rise t o their charge conservation, this causal relationship has generally been asserted via ad hoc derivations of the associated conservation laws. In this work, we develop a comprehensive theoretical grounding for charge conservation in gauge-symmetric Lagrangian and Hamiltonian PIC algorithms. For Lagrangian variational PIC methods, we apply Noethers second theorem to demonstrate that gauge symmetry gives rise to a local charge conservation law as an off-shell identity. For Hamiltonian splitting methods, we show that the momentum map establishes their charge conservation laws. We define a new class of algorithms -- gauge-compatible splitting methods -- that exactly preserve the momentum map associated with a Hamiltonian systems gauge symmetry -- even after time discretization. This class of algorithms affords splitting schemes a decided advantage over alternative Hamiltonian integrators. We apply this general technique to design a novel, explicit, symplectic, gauge-compatible splitting PIC method, whose momentum map yields an exact local charge conservation law. Our study clarifies the appropriate initial conditions for such schemes and examines their symplectic reduction.
Many high power electronic devices operate in a regime where the current they draw is limited by the self-fields of the particles. This space-charge-limited current poses particular challenges for numerical modeling where common techniques like over- emission or Gauss Law are computationally inefficient or produce nonphysical effects. In this paper we show an algorithm using the value of the electric field in front of the surface instead of attempting to zero the field at the surface, making the algorithm particularly well suited to both electromagnetic and parallel implementations of the PIC algorithm. We show how the algorithm is self-consistent within the framework of finite difference (for both electrostatics and electromagnetics). We show several 1D and 2D benchmarks against both theory and previous computational results. Finally we show application in 3D to high power microwave generation in a 13 GHz magnetically insulated line oscillator.
The paper provides a tutorial to the conceptual layout of a self-consistently coupled Particle-In-Cell/Test-Particle model for the kinetic simulation of sputtering transport in capacitively coupled plasmas at low gas pressures. It explains when a kin etic approach is actually needed and which numerical concepts allow for the inherent nonequilibrium behavior of the charged and neutral particles. At the example of a generic sputtering discharge both the fundamentals of the applied Monte Carlo methods as well as the conceptual details in the context of the sputtering scenario are elaborated on. Finally, two in the context of sputtering transport simulations often exploited assumptions, namely on the energy distribution of impinging ions as well as on the test particle approach, are validated for the proposed example discharge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا