ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-fluid model of rf current condensation in magnetic islands

55   0   0.0 ( 0 )
 نشر من قبل Suying Jin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The stabilization of tearing modes with rf waves is subject to a nonlinear effect, termed rf current condensation, that has the potential to greatly enhance and localize current driven within magnetic islands. Here we extend previous investigations of this effect with a two fluid model that captures the balance of diffusive and thermal equilibration processes within the island. We show that the effective power, and resulting strength of the condensation effect, can be greatly enhanced by avoiding collisional heat loss to the ions. The relative impact of collisions on the overall power balance within the island depends on the ratio of the characteristic diffusion time scale and the electron-ion equilibration time, rather than the latter alone. Although relative heat loss to ions increases with island size, the heating efficiency does as well. In particular, we show that the latter safely dominates for large deposition profiles, as is typically the case for LHCD. This supports the possibility of passive stabilization of NTMs, without the precise aiming of the rf waves required for ECCD stabilization.



قيم البحث

اقرأ أيضاً

100 - O. Khabarova , G.P. Zank , G. Li 2015
Increases of ion fluxes in the keV-MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle (SEP) events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller current sheets in the solar wind (Zharkova & Khabarova 2012), of which a consequence is particle energization by the dynamically evolving secondary current sheets and magnetic islands (Zank et al. 2014; Drake et al. 2006a). The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field, and experience first-order Fermi acceleration in contracting magnetic islands (Zank et al. 2014). We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.
A nonlinear unified fluid model that describes the Equatorial Electrojet, including the Farley-Buneman and gradient-drift plasma instabilities, is defined and shown to be a noncanonical Hamiltonian system. Two geometric constants of motion for the mo del are obtained and shown to be Casimir invariants. A reformulation of the model shows the roles of the density-gradient scale-length ($L_n$) and the cross-field drift-velocity (${upsilon}_E$) in controlling the dynamics of unstable modes in the growing, transition, and saturation phases of a simulation.
66 - Y. Li , R. Samtaney , D. Bond 2020
The two-fluid (ions and electrons) plasma Richtmyer-Meshkov instability of a cylindrical light/heavy density interface is numerically investigated without an initial magnetic field. Varying the Debye length scale, we examine the effects of the coupli ng between the electron and ion fluids. When the coupling becomes strong, the electrons are restricted to co-move with the ions and the resulting evolution is similar to the hydrodynamic neutral fluid case. The charge separation that occurs between the electrons and ions results in self-generated electromagnetic fields. We show that the Biermann battery effect dominates the generation of magnetic field when the coupling between the electrons and ions is weak. In addition to the Rayleigh-Tayler stabilization effect during flow deceleration, the interfaces are accelerated by the induced spatio-temporally varying Lorentz force. As a consequence, the perturbations develop into the Rayleigh-Taylor instability, leading to an enhancement of the perturbation amplitude compared with the hydrodynamic case.
Because of the large mass differences between electrons and ions, the heat diffusion in electron-ion plasmas exhibits more complex behavior than simple heat diffusion found in typical gas mixtures. In particular, heat is diffused in two distinct, but coupled, channels. Conventional single fluid models neglect the resulting complexity, and can often inaccurately interpret the results of heat pulse experiments. However, by recognizing the sensitivity of the electron temperature evolution to the ion diffusivity, not only can previous experiments be interpreted correctly, but informative simultaneous measurements can be made of both ion and electron heat channels.
59 - J. Ng , A. Hakim , J. Juno 2019
The integration of kinetic effects in fluid models is important for global simulations of the Earths magnetosphere. We use a two-fluid ten moment model, which includes the pressure tensor and has been used to study reconnection, to study the drift ki nk and lower hybrid drift instabilities. Using a nonlocal linear eigenmode analysis, we find that for the kink mode, the ten moment model shows good agreement with kinetic calculations with the same closure model used in reconnection simulations, while the electromagnetic and electrostatic lower hybrid instabilities require modeling the effects of the ion resonance using a Landau fluid closure. Comparisons with kinetic simulations and the implications of the results for global magnetospheric simulations are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا