ﻻ يوجد ملخص باللغة العربية
We present observations of the stellar kinematics of the centre of the core collapsed globular cluster M15 obtained with the MUSE integral field spectrograph on the VLT operating in narrow field mode. Thanks to the use of adaptive optics, we obtain a spatial resolution of 0.1arcsec and are able to reliably measure the radial velocities of 864 stars within 8 arcsec of the centre of M15 thus providing the largest sample of radial velocities ever obtained for the innermost regions of this system. Combined with previous observations of M15 using MUSE in wide field mode and literature data, we find that the central kinematics of M15 are complex with the rotation axis of the core of M15 offset from the rotation axis of the bulk of the cluster. While this complexity has been suggested by previous work, we confirm it at higher significance and in more detail.
Early-type galaxies show a strong size evolution with redshift. This evolution is explained by fast in-situ star formation at high-$z$ followed by a late mass assembly mostly driven by minor mergers that deposit stars primarily in the outer halo. We
Intermediate mass black holes (IMBHs) with expected masses M_BH ~ 10^4 M_sun are thought to bridge the gap between stellar mass black holes (M_BH ~ 3 - 100 M_sun) and supermassive black holes found at the centre of galaxies (M_BH > 10^6 M_sun). Until
We have observed the oxygen-rich SNR 1E 0102.2-7219 with the integral field spectrograph WiFeS at Siding Spring Observatory and discovered sulfur-rich ejecta for the first time. Follow-up deep DDT observations with MUSE on the VLT (8100 s on source)
Here we describe a simple, efficient, and most importantly fully operational point-spread-function(PSF)-reconstruction approach for laser-assisted ground layer adaptive optics (GLAO) in the frame of the Multi Unit Spectroscopic Explorer (MUSE) Wide F
We present a new integral-field spectroscopic dataset of the central part of the Orion Nebula (M 42), observed with the MUSE instrument at the ESO VLT. We reduced the data with the public MUSE pipeline. The output products are two FITS cubes with a s