ﻻ يوجد ملخص باللغة العربية
Millisecond spinning, low magnetic field neutron stars are believed to attain their fast rotation in a 0.1-1 Gyr-long phase during which they accrete matter endowed with angular momentum from a low-mass companion star. Despite extensive searches, coherent periodicities originating from accreting neutron star magnetospheres have been detected only at X-ray energies and in ~10% of the presently known systems. Here we report the detection of optical and ultraviolet coherent pulsations at the X-ray period of the transient low mass X-ray binary system SAX J1808.4-3658, during an accretion outburst that occurred in August 2019. At the time of the observations, the pulsar was surrounded by an accretion disc, displayed X-ray pulsations and its luminosity was consistent with magnetically funneled accretion onto the neutron star. Current accretion models fail to account for the luminosity of both optical and ultraviolet pulsations; these are instead more likely driven by synchro-curvature radiation in the pulsar magnetosphere or just outside of it. This interpretation would imply that particle acceleration can take place even when mass accretion is going on, and opens up new perspectives in the study of coherent optical/UV pulsations from fast spinning accreting neutron stars in low-mass X-ray binary systems.
We present results of targeted searches for signatures of non-radial oscillation modes (such as r- and g-modes) in neutron stars using {it RXTE} data from several accreting millisecond X-ray pulsars (AMXPs). We search for potentially coherent signals
The large majority of neutron stars (NSs) in low mass X-ray binaries (LMXBs) have never shown detectable pulsations despite several decades of intense monitoring. The reason for this remains an unsolved problem that hampers our ability to measure the
We report the detection of a possible gamma-ray counterpart of the accreting millisecond pulsar SAX J1808.4-3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a region
Weakly magnetic, millisecond spinning neutron stars attain their very fast rotation through a 1E8-1E9 yr long phase during which they undergo disk-accretion of matter from a low mass companion star. They can be detected as accretion-powered milliseco
We present an optical (gri) study during quiescence of the accreting millisecond X-ray pulsar IGR J00291+5934 performed with the 10.4m Gran Telescopio Canarias (GTC) in August 2014. Despite the source being in quiescence at the time of our observatio