ترغب بنشر مسار تعليمي؟ اضغط هنا

The Challenges Ahead for Multimessenger Analyses of Gravitational Waves and Kilonova: a Case Study on GW190425

123   0   0.0 ( 0 )
 نشر من قبل Geert Raaijmakers
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, there have been significant advances in multi-messenger astronomy due to the discovery of the first, and so far only confirmed, gravitational wave event with a simultaneous electromagnetic (EM) counterpart, as well as improvements in numerical simulations, gravitational wave (GW) detectors, and transient astronomy. This has led to the exciting possibility of performing joint analyses of the GW and EM data, providing additional constraints on fundamental properties of the binary progenitor and merger remnant. Here, we present a new Bayesian framework that allows inference of these properties, while taking into account the systematic modeling uncertainties that arise when mapping from GW binary progenitor properties to photometric light curves. We extend the relative binning method presented in Zackay et al. (2018) to include extrinsic GW parameters for fast analysis of the GW signal. The focus of our EM framework is on light curves arising from r-process nucleosynthesis in the ejected material during and after merger, the so called kilonova, and particularly on black hole - neutron star systems. As a case study, we examine the recent detection of GW190425, where the primary object is consistent with being either a black hole (BH) or a neutron star (NS). We show quantitatively how improved mapping between binary progenitor and outflow properties, and/or an increase in EM data quantity and quality are required in order to break degeneracies in the fundamental source parameters.



قيم البحث

اقرأ أيضاً

LISA will open the mHz band of gravitational waves (GWs) to the astronomy community. The strong gravity which powers the variety of GW sources in this band is also crucial in a number of important astrophysical processes at the current frontiers of a stronomy. These range from the beginning of structure formation in the early universe, through the origin and cosmic evolution of massive black holes in concert with their galactic environments, to the evolution of stellar remnant binaries in the Milky Way and in nearby galaxies. These processes and their associated populations also drive current and future observations across the electromagnetic (EM) spectrum. We review opportunities for science breakthroughs, involving either direct coincident EM+GW observations, or indirect multimessenger studies. We argue that for the US community to fully capitalize on the opportunities from the LISA mission, the US efforts should be accompanied by a coordinated and sustained program of multi-disciplinary science investment, following the GW data through to its impact on broad areas of astrophysics. Support for LISA-related multimessenger observers and theorists should be sized appropriately for a flagship observatory and may be coordinated through a dedicated mHz GW research center.
We present the baseline multimessenger analysis method for the joint observations of gravitational waves (GW) and high-energy neutrinos (HEN), together with a detailed analysis of the expected science reach of the joint search. The analysis method co mbines data from GW and HEN detectors, and uses the blue-luminosity-weighted distribution of galaxies. We derive expected GW+HEN source rate upper limits for a wide range of source parameters covering several emission models. Using published sensitivities of externally triggered searches, we derive joint upper limit estimates both for the ongoing analysis with the initial LIGO-Virgo GW detectors with the partial IceCube detector (22 strings) HEN detector and for projected results to advanced LIGO-Virgo detectors with the completed IceCube (86 strings). We discuss the constraints these upper limits impose on some existing GW+HEN emission models.
111 - I.H. Park , K.-Y. Choi , J. Hwang 2019
We propose a new method to detect gravitational waves, based on spatial coherence interferometry with stellar light, as opposed to the conventional temporal coherence interferometry with laser sources. The proposed method detects gravitational waves by using two coherent beams of light from a single distant star measured at separate space-based detectors with a long baseline. This method can be applied to either the amplitude or intensity interferometry. This experiment allows for the search of gravitational waves in the lower frequency range of $10^{-6}$ to $10^{-4}$ Hz. In this work, we present the detection sensitivity of the proposed stellar interferometer by taking the detector response and shot and acceleration noises into account. Furthermore, the proposed experimental setup is capable of searching for primordial black holes and studying the size of the target neutron star, which are also discussed in the paper.
Pulsar timing array (PTA) collaborations in North America, Australia, and Europe, have been exploiting the exquisite timing precision of millisecond pulsars over decades of observations to search for correlated timing deviations induced by gravitatio nal waves (GWs). PTAs are sensitive to the frequency band ranging just below 1 nanohertz to a few tens of microhertz. The discovery space of this band is potentially rich with populations of inspiraling supermassive black-holes binaries, decaying cosmic string networks, relic post-inflation GWs, and even non-GW imprints of axionic dark matter. This article aims to provide an understanding of the exciting open science questions in cosmology, galaxy evolution, and fundamental physics that will be addressed by the detection and study of GWs through PTAs. The focus of the article is on providing an understanding of the mechanisms by which PTAs can address specific questions in these fields, and to outline some of the subtleties and difficulties in each case. The material included is weighted most heavily towards the questions which we expect will be answered in the near-term with PTAs; however, we have made efforts to include most currently anticipated applications of nanohertz GWs.
Upcoming searches for the stochastic background of inflationary gravitational waves (GWs) offer the exciting possibility to probe the evolution of our Universe prior to Big Bang nucleosynthesis. In this spirit, we explore the sensitivity of future GW observations to a broad class of beyond-the-Standard-Model scenarios that lead to a nonstandard expansion history. We consider a new scalar field whose coherent oscillations dominate the energy density of the Universe at very early times, resulting in a scalar era prior to the standard radiation-dominated era. The imprint of this scalar era on the primordial GW spectrum provides a means to probe well-motivated yet elusive models of particle physics. Our work highlights the complementarity of future GW observatories across the entire range of accessible frequencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا