ﻻ يوجد ملخص باللغة العربية
Bi$_2$O$_2$Se is a promising material for next-generation semiconducting electronics. It exhibits premature metallicity on the introduction of a tiny amount of electrons, the physics behind which remains elusive. Here we report on transport and dielectric measurements in Bi$_2$O$_2$Se single crystals at various carrier densities. The temperature-dependent resistivity ($rho$) indicates a smooth evolution from the semiconducting to the metallic state. The critical concentration for the metal-insulator transition (MIT) to occur is extraordinarily low ($n_textrm{c}sim10^{16}$ cm$^{-3}$). The relative permittivity of the insulating sample is huge ($epsilon_textrm{r}approx155(10)$) and varies slowly with temperature. Combined with the light effective mass, a long effective Bohr radius ($a_textrm{B}^*approx36(2)$ $textrm{nm}$) is derived, which provides a reasonable interpretation of the metallic prematurity according to Motts criterion for MITs. The high electron mobility ($mu$) at low temperatures may result from the screening of ionized scattering centers due to the huge $epsilon_textrm{r}$. Our findings shed light on the electron dynamics in two dimensional (2D) Bi$_2$O$_2$Se devices.
By using solid-state reactions, we successfully synthesize new oxyselenides CsV$_2$Se$_{2-x}$O (x = 0, 0.5). These compounds containing V$_2$O planar layers with a square lattice crystallize in the CeCr$_2$Si$_2$C structure with the space group of $P
Low-field magnetotransport measurements of topological insulators such as Bi$_2$Se$_3$ are important for revealing the nature of topological surface states by quantum corrections to the conductivity, such as weak-antilocalization. Recently, a rich va
Magnetoresistance (MR) of the Bi$_{2-x}$Pb$_x$Sr$_2$Co$_2$O$_y$ ($x$=0, 0.3, 0.4) single crystals is investigated systematically. A nonmonotonic variation of the isothermal in-plane and out-of-plane MR with the field is observed. The out-of-plane MR
Achieving true bulk insulating behavior in Bi$_2$Se$_3$, the archetypal topological insulator with a simplistic one-band electronic structure and sizable band gap, has been prohibited by a well-known self-doping effect caused by selenium vacancies, w
The electronic structure and magnetic properties of the strongly correlated material La$_2$O$_3$Fe$_2$Se$_2$ are studied by using both the density function theory plus $U$ (DFT+$U$) method and the DFT plus Gutzwiller (DFT+G) variational method. The g