ﻻ يوجد ملخص باللغة العربية
To compute the persistent homology of a grayscale digital image one needs to build a simplicial or cubical complex from it. For cubical complexes, the two commonly used constructions (corresponding to direct and indirect digital adjacencies) can give different results for the same image. The two constructions are almost dual to each other, and we use this relationship to extend and modify the cubical complexes to become dual filtered cell complexes. We derive a general relationship between the persistent homology of two dual filtered cell complexes, and also establish how various modifications to a filtered complex change the persistence diagram. Applying these results to images, we derive a method to transform the persistence diagram computed using one type of cubical complex into a persistence diagram for the other construction. This means software for computing persistent homology from images can now be easily adapted to produce results for either of the two cubical complex constructions without additional low-level code implementation.
Persistence diagrams, combining geometry and topology for an effective shape description used in pattern recognition, have already proven to be an effective tool for shape representation with respect to a certainfiltering function. Comparing the pers
We derive the relationship between the persistent homology barcodes of two dual filtered CW complexes. Applied to greyscale digital images, we obtain an algorithm to convert barcodes between the two different (dual) topological models of pixel connectivity.
Multidimensional persistence studies topological features of shapes by analyzing the lower level sets of vector-valued functions. The rank invariant completely determines the multidimensional analogue of persistent homology groups. We prove that mult
In this paper, we study further properties and applications of weighted homology and persistent homology. We introduce the Mayer-Vietoris sequence and generalized Bockstein spectral sequence for weighted homology. For applications, we show an algorit