ﻻ يوجد ملخص باللغة العربية
We study theoretical neutrino signals from core-collapse supernova (CCSN) computed using axisymmetric CCSN simulations that cover the post-bounce phase up to $sim 4$~s. We provide basic quantities of the neutrino signals such as event rates, energy spectra, and cumulative number of events at some terrestrial neutrino detectors, and then discuss some new features in the late phase that emerge in our models. Contrary to popular belief, neutrino emissions in the late phase are not always steady, but rather have temporal fluctuations, the vigor of which hinges on the CCSN model and neutrino flavor. We find that such temporal variations are not primarily driven by proto-neutron star (PNS) convection, but by fallback accretion in exploding models. We assess the detectability of these temporal variations, and find that IceCube is the most promising detector with which to resolve them. We also update fitting formulae first proposed in our previous paper for which the total neutrino energy (TONE) emitted at the CCSN source is estimated from the cumulative number of events in each detector. This will be a powerful technique with which to analyze real observations, particularly for low-statistics data.
We study electron-neutrino and electron-antineutrino signals from a supernova with strong magnetic field detected by a 100 kton liquid Ar detector. The change of neutrino flavors by resonant spin-flavor
We compare gravitational-wave (GW) signals from eight three-dimensional simulations of core-collapse supernovae, using two different progenitors with zero-age main sequence masses of 9 and 20 solar masses. The collapse of each progenitor was simulate
We introduce a novel methodology for establishing the presence of Standing Accretion Shock Instabilities (SASI) in the dynamics of a core collapse supernova from the observed neutrino event rate at water- or ice-based neutrino detectors. The methodol
This year marks the thirtieth anniversary of the only supernova from which we have detected neutrinos - SN 1987A. The twenty or so neutrinos that were detected were mined to great depth in order to determine the events that occurred in the explosion
We compare models of supernova (SN) neutrino emission with the Kamiokande II data on SN 1987A using the Bayesian approach. These models are taken from simulations and are representative of current 1D SN models. We find that models with a brief accret