ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of muon-electron elastic scattering in a test beam

53   0   0.0 ( 0 )
 نشر من قبل Mattia Soldani
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In 2018, a test run with muons in the North Area at CERN was performed, running parasitically downstream of the COMPASS spectrometer. The aim of the test was to investigate the elastic interactions of muons on atomic electrons, in an experimental configuration similar to the one proposed by the project MUonE, which plans to perform a very precise measurement of the differential cross-section of the elastic interactions. COMPASS was taking data with a 190 GeV pion beam, stopped in a tungsten beam dump: the muons from these pions decays passed through a setup including a graphite target followed by 10 planes of Si tracker and a BGO crystal electromagnetic calorimeter placed at the end of the tracker. The elastic scattering events were analysed, and compared to expectations from MonteCarlo simulation.



قيم البحث

اقرأ أيضاً

The T2K collaboration: reports evidence for electron neutrino appearance at the atmospheric mass splitting, |Delta m_{32}^2|=2.4x10^{-3} eV^2. An excess of electron neutrino interactions over background is observed from a muon neutrino beam with a pe ak energy of 0.6 GeV at the Super-Kamiokande (SK) detector 295 km from the beams origin. Signal and background predictions are constrained by data from near detectors located 280 m from the neutrino production target. We observe 11 electron neutrino candidate events at the SK detector when a background of 3.3pm0.4(syst.) events is expected. The background-only hypothesis is rejected with a p-value of 0.0009 (3.1sigma), and a fit assuming u_{mu}-> u_e oscillations with sin^2(2theta_{23})=1, delta_{CP}=0 and |Delta m_{32}^2|=2.4x10^{-3} eV^2 yields sin^2(2theta_{13})=0.088^{+0.049}_{-0.039}(stat.+syst.).
104 - K. Abe , J. Adam , H. Aihara 2013
The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution co nsistent with an appearance signal, corresponding to a significance of 7.3$sigma$ when compared to 4.92 $pm$ 0.55 expected background events. In the PMNS mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles $theta_{12}$, $theta_{23}$, $theta_{13}$, a mass difference $Delta m^2_{32}$ and a CP violating phase $delta_{mathrm{CP}}$. In this neutrino oscillation scenario, assuming $|Delta m^2_{32}| = 2.4 times 10^{-3}$ $rm eV^2$, $sin^2 theta_{23} = 0.5$, and $Delta m^2_{32} >0$ ($Delta m^2_{32} <0$), a best-fit value of $sin^2 2 theta_{13}$ = $0.140^{+0.038}_{-0.032}$ ($0.170^{+0.045}_{-0.037}$) is obtained at $delta_{mathrm{CP}}=0$. When combining the result with the current best knowledge of oscillation parameters including the world average value of $theta_{13}$ from reactor experiments, some values of $delta_{mathrm{CP}}$ are disfavored at the 90% CL.
127 - K. Abe , R. Akutsu , A. Ali 2019
Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the PMNS mixing matrix. T2K observes 15 candidate electron antineutri no events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40{sigma} and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and antineutrino appearance also finds no discrepancy between data and PMNS predictions.
We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasi-elastic scattering on the deuteron, at backward angles (lab scattering an gle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63 GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasi-static deuterium approximation, and is also in agreement with theory.
The observation of neutrino oscillations is clear evidence for physics beyond the standard model. To make precise measurements of this phenomenon, neutrino oscillation experiments, including MiniBooNE, require an accurate description of neutrino char ged current quasi-elastic (CCQE) cross sections to predict signal samples. Using a high-statistics sample of muon neutrino CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector. The extracted parameters include an effective axial mass, M_A^eff = 1.23+/-0.20 GeV, that describes the four-momentum dependence of the axial-vector form factor of the nucleon; and a Pauli-suppression parameter, kappa = 1.019+/-0.011. Such a modified Fermi gas model may also be used by future accelerator-based experiments measuring neutrino oscillations on nuclear targets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا