ﻻ يوجد ملخص باللغة العربية
As one of the most fundamental physical phenomena, the anomalous Hall effect (AHE) typically occurs in ferromagnetic materials but is not expected in the conventional superconductors. Here, we have observed a giant AHE in kagome superconductor CsV3Sb5 with transition temperature (Tc) of 2.7 K. The anomalous Hall conductivity reaches up to 2.1*10^4 {Omega}-1 cm-1 which is larger than those observed in most of the ferromagnetic metals. Strikingly, the emergence of AHE exactly follows the higher-temperature charge-density-wave (CDW) transition with TCDW ~ 94 K, indicating a strong correlation between the CDW state and AHE. Furthermore, AHE disappears when the CDW transition is completely suppressed at high pressure. The origin for AHE is attributed to enhanced skew scattering in CDW state and large Berry curvature arose from the kagome lattice. These discoveries make CsV3Sb5 as an ideal platform to study the interplay among nontrivial band topology, CDW and unconventional superconductivity.
Charge density wave, or CDW, is usually associated with Fermi surfaces nesting. We here report a new CDW mechanism discovered in a 2H-structured transition metal dichalcogenide, where the two essential ingredients of CDW are realized in very anomalou
Understanding the competition between superconductivity and other ordered states (such as antiferromagnetic or charge-density-wave (CDW) state) is a central issue in condensed matter physics. The recently discovered layered kagome metal AV3Sb5 (A = K
The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper-oxides is strongly influenced by
The electronic band structure of the 2D kagome net hosts two different types of van Hove singularities (vHs) arising from an intrinsic electron-hole asymmetry. The distinct sublattice flavors (pure and mixed, p-type and m-type) and pairing instabilit
We report transport measurements under very high current densities $j$, up to $sim10^8$~A/cm$^2$, of quasi-one-dimensional charge-density wave (CDW) conductors NbSe$_3$ and TaS$_3$. Joule heating has been minimized by using a point-contact configurat