ترغب بنشر مسار تعليمي؟ اضغط هنا

Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal

90   0   0.0 ( 0 )
 نشر من قبل X. H. Chen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As one of the most fundamental physical phenomena, the anomalous Hall effect (AHE) typically occurs in ferromagnetic materials but is not expected in the conventional superconductors. Here, we have observed a giant AHE in kagome superconductor CsV3Sb5 with transition temperature (Tc) of 2.7 K. The anomalous Hall conductivity reaches up to 2.1*10^4 {Omega}-1 cm-1 which is larger than those observed in most of the ferromagnetic metals. Strikingly, the emergence of AHE exactly follows the higher-temperature charge-density-wave (CDW) transition with TCDW ~ 94 K, indicating a strong correlation between the CDW state and AHE. Furthermore, AHE disappears when the CDW transition is completely suppressed at high pressure. The origin for AHE is attributed to enhanced skew scattering in CDW state and large Berry curvature arose from the kagome lattice. These discoveries make CsV3Sb5 as an ideal platform to study the interplay among nontrivial band topology, CDW and unconventional superconductivity.

قيم البحث

اقرأ أيضاً

Charge density wave, or CDW, is usually associated with Fermi surfaces nesting. We here report a new CDW mechanism discovered in a 2H-structured transition metal dichalcogenide, where the two essential ingredients of CDW are realized in very anomalou s ways due to the strong-coupling nature of the electronic structure. Namely, the CDW gap is only partially open, and charge density wavevector match is fulfilled through participation of states of the large Fermi patch, while the straight FS sections have secondary or negligible contributions.
94 - F. H. Yu , D. H. Ma , W. Z. Zhuo 2021
Understanding the competition between superconductivity and other ordered states (such as antiferromagnetic or charge-density-wave (CDW) state) is a central issue in condensed matter physics. The recently discovered layered kagome metal AV3Sb5 (A = K , Rb, and Cs) provides us a new playground to study the interplay of superconductivity and CDW state by involving nontrivial topology of band structures. Here, we conduct high-pressure electrical transport and magnetic susceptibility measurements to study CsV3Sb5 with the highest Tc of 2.7 K in AV3Sb5 family. While the CDW transition is monotonically suppressed by pressure, superconductivity is enhanced with increasing pressure up to P1~0.7 GPa, then an unexpected suppression on superconductivity happens until pressure around 1.1 GPa, after that, Tc is enhanced with increasing pressure again. The CDW is completely suppressed at a critical pressure P2~2 GPa together with a maximum Tc of about 8 K. In contrast to a common dome-like behavior, the pressure-dependent Tc shows an unexpected double-peak behavior. The unusual suppression of Tc at P1 is concomitant with the rapidly damping of quantum oscillations, sudden enhancement of the residual resistivity and rapid decrease of magnetoresistance. Our discoveries indicate an unusual competition between superconductivity and CDW state in pressurized kagome lattice.
The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper-oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant x-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La$_{2/3}$Ca$_{1/3}$MnO$_3$ greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa$_2$Cu$_3$O$_{6+delta}$ ($bf delta sim 1$), and that this effect persists over several tens of nm. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge density wave state in the cuprates, and more generally, to manipulate the interplay between different collective phenomena in metal oxides.
The electronic band structure of the 2D kagome net hosts two different types of van Hove singularities (vHs) arising from an intrinsic electron-hole asymmetry. The distinct sublattice flavors (pure and mixed, p-type and m-type) and pairing instabilit ies associated to the two types of vHs are key to understand the unconventional many-body phases of the kagome lattice. Here, in a recently discovered kagome metal CsV3Sb5 exhibiting charge order and superconductivity, we have examined the vHs, Fermi surface nesting, and many-body gap opening. Using high-resolution angle-resolved photoemission spectroscopy (ARPES), we identify multiple vHs coexisting near the Fermi level of CsV3Sb5, including both p- and m-types of vHs emerging from dxz/dyz kagome bands and a p-type vHs from dxy/dx2-y2 kagome bands. Among the multiple vHs, the m-type vHs is located closest to the Fermi level and is characterized by sharp Fermi surface nesting and gap opening across the charge order transition. Our work reveals the essential role of kagome-derived vHs as a driving mechanism for the collective phenomena realized in the AV3Sb5 family (A = K, Rb, Cs) and paves the way for a deeper understanding of strongly correlated topological kagome systems.
We report transport measurements under very high current densities $j$, up to $sim10^8$~A/cm$^2$, of quasi-one-dimensional charge-density wave (CDW) conductors NbSe$_3$ and TaS$_3$. Joule heating has been minimized by using a point-contact configurat ion or by measuring samples with extremely small cross-sections. Above $j_c approx 10^7$~A/cm$^2$ we find evidence for suppression of the Peierls gap and development of the metallic state. The critical CDW velocity corresponding with $j_0$ is comparable with the sound velocity, and with $Delta/ hbar k_F$ ($k_F$ is the Fermi wave vector), which corresponds to the depairing current. Possible scenarios of the Peierls state destruction are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا