ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Structural Influence on the 2D Electron Gas at SrTiO$_3$ Surfaces

48   0   0.0 ( 0 )
 نشر من قبل Eduardo Bonini Guedes
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The two-dimensional electron gas found at the surface of SrTiO$_3$ and related interfaces has attracted significant attention as a promising basis for oxide electronics. In order to utilize its full potential, the response of this 2DEG to structural changes and surface modification must be understood in detail. Here, we present a study of the detailed electronic structure evolution of the 2DEG as a function of sample temperature and surface step density. By comparing our experimental results with textit{ab initio} calculations, we found that a SrO-rich surface layer is a prerequisite for electronic confinement. We also show that local structure relaxations cause a metal-insulator transition of the system around 135~K. Our study presents a new and simple way of tuning the 2DEG via surface vicinality and identifies how the operation of prospective devices will respond to changes in temperature.



قيم البحث

اقرأ أيضاً

We used x-ray absorption spectroscopy to study the orbital symmetry and the energy band splitting of (111) LaAlO${_3}$/SrTiO${_3}$ and LaAlO${_3}$/EuTiO${_3}$/SrTiO${_3}$ heterostructures, hosting a quasi two-dimensional electron system (q2DES), and of a Ti-terminated (111) SrTiO${_3}$ single crystal, also known to form a q2DES at its surface. We demonstrate that the bulk tetragonal Ti-3d D${_4}$${_h}$ crystal field is turned into trigonal D${_3}$${_d}$ crystal field in all cases. The symmetry adapted a${_1}$${_g}$ and e${^pi_g}$ orbitals are non-degenerate in energy and their splitting, Delta, is positive at the bare STO surface but negative in the heterostructures, where the a${_1}$${_g}$ orbital is lowest in energy. These results demonstrate that the interfacial symmetry breaking induced by epitaxial engineering of oxide interfaces has a dramatic effect on their electronic properties, and it can be used to manipulate the ground state of the q2DES.
We report the angular dependence of magnetoresistance in two-dimensional electron gas at LaAlO$_3$/SrTiO$_3$ interface. We find that this interfacial magnetoresistance exhibits a similar angular dependence to the spin Hall magnetoresistance observed in ferromagnet/heavy metal bilayers, which has been so far discussed in the framework of bulk spin Hall effect of heavy metal layer. The observed magnetoresistance is in qualitative agreement with theoretical model calculation including both Rashba spin-orbit coupling and exchange interaction. Our result suggests that magnetic interfaces subject to spin-orbit coupling can generate a nonnegligible contribution to the spin Hall magnetoresistance and the interfacial spin-orbit coupling effect is therefore key to the understanding of various spin-orbit-coupling-related phenomena in magnetic/non-magnetic bilayers.
460 - A. F^ete , C. Cancellieri , D. Li 2015
We have studied the electronic properties of the 2D electron liquid present at the LaAlO$_3$/SrTiO$_3$ interface in series of samples prepared at different growth temperatures. We observe that interfaces fabricated at 650{deg}C exhibit the highest lo w temperature mobility ($approx 10000 textrm{ cm}^2/textrm{Vs}$) and the lowest sheet carrier density ($approx 5times 10^{12} textrm{ cm}^{-2}$). These samples show metallic behavior and Shubnikov-de Haas oscillations in their magnetoresistance. Samples grown at higher temperatures (800-900{deg}C) display carrier densities in the range of $approx 2-5 times 10^{13} textrm{ cm}^{-2}$ and mobilities of $approx 1000 textrm{ cm}^2/textrm{Vs}$ at 4K. Reducing their carrier density by field effect to $8times 10^{12} textrm{ cm}^{-2}$ lowers their mobilites to $approx 50 textrm{ cm}^2/textrm{Vs}$ bringing the conductance to the weak-localization regime.
We create a two-dimensional electron system (2DES) at the interface between EuO, a ferromagnetic insulator, and SrTiO3, a transparent non-magnetic insulator considered the bedrock of oxide-based electronics. This is achieved by a controlled in-situ r edox reaction between pure metallic Eu deposited at room temperature on the surface of SrTiO3, an innovative bottom-up approach that can be easily generalized to other functional oxides and scaled to applications. Additionally, we find that the resulting EuO capping layer can be tuned from paramagnetic to ferromagnetic, depending on the layer thickness. These results demonstrate that the simple, novel technique of creating 2DESs in oxides by deposition of elementary reducing agents [T. C. Rodel et al., Adv. Mater. 28, 1976 (2016)] can be extended to simultaneously produce an active, e.g. magnetic, capping layer enabling the realization and control of additional functionalities in such oxide-based 2DESs.
184 - I. Leermakers , K. Rubi , M. Yang 2021
We have investigated the illumination effect on the magnetotransport properties of a two-dimensional electron system at the LaAlO$_3$/SrTiO$_3$ interface. The illumination significantly reduces the zero-field sheet resistance, eliminates the Kondo ef fect at low-temperature, and switches the negative magnetoresistance into the positive one. A large increase in the density of high-mobility carriers after illumination leads to quantum oscillations in the magnetoresistance originating from the Landau quantization. The carrier density ($sim 2 times 10^{12}$ cm$^{-2}$) and effective mass ($sim 1.7 ~m_e$) estimated from the oscillations suggest that the high-mobility electrons occupy the d$_{xz/yz}$ subbands of Ti:t$_{2g}$ orbital extending deep within the conducting sheet of SrTiO$_3$. Our results demonstrate that the illumination which induces additional carriers at the interface can pave the way to control the Kondo-like scattering and study the quantum transport in the complex oxide heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا