ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Vector Potentials Underlying One-dimensional Nonlinear Waves

84   0   0.0 ( 0 )
 نشر من قبل Li-Chen Zhao Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reveal intrinsic topological vector potentials underlying the nonlinear waves governed by one-dimensional nonlinear Schr{o}dinger equations by investigating the Berry connection of the linearized Bogoliubov-de-Gennes (BdG) equations in an extended complex coordinate space. Surprisingly, we find that the density zeros of these nonlinear waves exactly correspond to the degenerate points of the BdG energy spectra and can constitute monopole fields with a quantized magnetic flux of elementary $pi$. Such a vector potential consisting of paired monopoles with opposite charges can completely capture the essential characteristics of nonlinear wave evolution. As an application, we investigate rogue waves and explain their exotic property of ``appearing from nowhere and disappearing without a trace by means of a monopole collision mechanism. The maximum amplification ratio and multiple phase steps of a high-order rogue wave are found to be closely related to the number of monopoles. Important implications of the intrinsic topological vector potentials are discussed.



قيم البحث

اقرأ أيضاً

108 - A. Ciattoni , 2000
The peculiar intergrability of the Davey-Stewartson equation allows us to find analytically solutions describing the simultaneous formation and interaction of one-dimensional and two-dimensional localized coherent structures. The predicted phenomenol ogy allows us to address the issue of interaction of solitons of different dimensionality that may serve as a starting point for the understanding of hybrido-dimensional collisions recently observed in nonlinear optical media.
In this work, we study solitary waves in a (2+1)-dimensional variant of the defocusing nonlinear Schrodinger (NLS) equation, the so-called Camassa-Holm NLS (CH-NLS) equation. We use asymptotic multiscale expansion methods to reduce this model to a Ka domtsev--Petviashvili (KP) equation. The KP model includes both the KP-I and KP-
In this paper we analyze the existence, stability, dynamical formation and mobility properties of localized solutions in a one-dimensional system described by the discrete nonlinear Schr{o}dinger equation with a linear point defect. We consider both attractive and repulsive defects in a focusing lattice. Among our main findings are: a) the destabilization of the on--site mode centered at the defect in the repulsive case; b) the disappearance of localized modes in the vicinity of the defect due to saddle-node bifurcations for sufficiently strong defects of either type; c) the decrease of the amplitude formation threshold for attractive and its increase for repulsive defects; and d) the detailed elucidation as a function of initial speed and defect strength of the different regimes (trapping, trapping and reflection, pure reflection and pure transmission) of interaction of a moving localized mode with the defect.
We study coupled unstaggered-staggered soliton pairs emergent from a system of two coupled discrete nonlinear Schr{o}dinger (DNLS) equations with the self-attractive on-site self-phase-modulation nonlinearity, coupled by the repulsive cross-phase-mod ulation interaction, on 1D and 2D lattice domains. These mixed modes are of a symbiotic type, as each component in isolation may only carry ordinary unstaggered solitons. While most work on DNLS systems addressed symmetric on-site-centered fundamental solitons, these models give rise to a variety of other excited states, which may also be stable. The simplest among them are antisymmetric states in the form of discrete twisted solitons, which have no counterparts in the continuum limit. In the extension to 2D lattice domains, a natural counterpart of the twisted states are vortical solitons. We first introduce a variational approximation (VA) for the solitons, and then correct it numerically to construct exact stationary solutions, which are then used as initial conditions for simulations to check if the stationary states persist under time evolution. Two-component solutions obtained include (i) 1D fundamental-twisted and twisted-twisted soliton pairs, (ii) 2D fundamental-fundamental soliton pairs, and (iii) 2D vortical-vortical soliton pairs. We also highlight a variety of other transient dynamical regimes, such as breathers and amplitude death. The findings apply to modeling binary Bose-Einstein condensates, loaded in a deep lattice potential, with identical or different atomic masses of the two components, and arrays of bimodal optical waveguides.
103 - Jincheng Shi , Jianhua Zeng 2019
We analyze the existence and stability of two kinds of self-trapped spatially localized gap modes, gap solitons and truncated nonlinear Bloch waves, in one-and two-dimensional optical or matter-wave media with self-focusing nonlinearity, supported by a combination of linear and nonlinear periodic lattice potentials. The former is found to be stable once placed inside a single well of the nonlinear lattice, it is unstable otherwise. Contrary to the case with constant self-focusing nonlinearity, where the latter solution is always unstable, here, we demonstrate that it nevertheless can be stabilized by the nonlinear lattice since the model under consideration combines the unique properties of both the linear and nonlinear lattices. The practical possibilities for experimental realization of the predicted solutions are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا