ﻻ يوجد ملخص باللغة العربية
The early B star S1 in the Rho Ophiuchus cloud excites an HII region and illuminates a large egg-shaped photodissociation (PDR) cavity. The PDR is restricted to the west and south-west by the dense molecular Rho Oph A ridge, expanding more freely into the diffuse low density cloud to the north-east. We analyze new SOFIA GREAT, GMRT and APEX data together with archival data from Herschel/PACS, JCMT/HARPS to study the properties of the photo-irradiated ionized and neutral gas in this region. The tracers include [C II] at 158 micron, [O I] at 63 and 145 micron, J=6-5 transitions of CO and 13CO, HCO+ (4-3), radio continuum at 610 and 1420 MHz and HI at 21 cm. The PDR emission is strongly red-shifted to the south-east of the nebula, and primarily blue-shifted on the north western side. The [C II] and and [O I]63 spectra are strongly self-absorbed over most of the PDR. By using the optically thin counterparts, [13C II] and [O I]145 respectively, we conclude that the self-absorption is dominated by the warm (>80 K) foreground PDR gas and not by the surrounding cold molecular cloud. We estimate the column densities of C+ and O of the PDR to be 3e18 and 2e19 cm^-2, respectively. Comparison of stellar far-ultraviolet flux and reprocessed infrared radiation suggest enhanced clumpiness of the gas to the north-west. Analysis of the emission from the PDR gas suggests the presence of at least three density components consisting of high density (10^6 cm^-3) clumps, medium density (10^4 cm^-3) and diffuse (10^3 cm^-3) interclump medium. The medium density component primarily contributes to the thermal pressure of the PDR gas which is in pressure equilibrium with the molecular cloud to the west. We find that the PDR is tilted and warped with the south-eastern side of the cavity being denser on the front and the north-western side being denser on the rear.
We analyze a [C II] 158 micron map obtained with the L2 GREAT receiver on SOFIA of the emission/reflection nebula illuminated by the early B star S1 in the rho-OphA cloud core. This data set has been complemented with maps of CO(3-2), 13CO(3-2) and C
We investigate to what degree local physical and chemical conditions are related to the evolutionary status of various objects in star-forming media. rho Oph A displays the entire sequence of low-mass star formation in a small volume of space. Using
We present the results of data analysis of the [CI] ($^{3}P_{1}$-$^{3}P_{0}$) emission from the $rho$ Ophiuchi A photon-dominated region (PDR) obtained in the ALMA ACA stand-alone mode with a spatial resolution of 2.6 (360 au). The [CI] emission show
We detected a compact ionized gas associated physically with IRS13E3, an Intermediate Mass Black Hole (IMBH) candidate in the Galactic Center, in the continuum emission at 232 GHz and H30$alpha$ recombination line using ALMA Cy.5 observation (2017.1.
We present 21cm HI observations of four Hickson Compact Groups with evidence for a substantial intragroup medium using the Robert C. Byrd Green Bank Telescope (GBT). By mapping H I emission in a region of 25$^{prime}times$25$^{prime}$ (140-650 kpc) s