ترغب بنشر مسار تعليمي؟ اضغط هنا

Policy-Aware Mobility Model Explains the Growth of COVID-19 in Cities

397   0   0.0 ( 0 )
 نشر من قبل Zhenyu Han
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

With the continued spread of coronavirus, the task of forecasting distinctive COVID-19 growth curves in different cities, which remain inadequately explained by standard epidemiological models, is critical for medical supply and treatment. Predictions must take into account non-pharmaceutical interventions to slow the spread of coronavirus, including stay-at-home orders, social distancing, quarantine and compulsory mask-wearing, leading to reductions in intra-city mobility and viral transmission. Moreover, recent work associating coronavirus with human mobility and detailed movement data suggest the need to consider urban mobility in disease forecasts. Here we show that by incorporating intra-city mobility and policy adoption into a novel metapopulation SEIR model, we can accurately predict complex COVID-19 growth patterns in U.S. cities ($R^2$ = 0.990). Estimated mobility change due to policy interventions is consistent with empirical observation from Apple Mobility Trends Reports (Pearsons R = 0.872), suggesting the utility of model-based predictions where data are limited. Our model also reproduces urban superspreading, where a few neighborhoods account for most secondary infections across urban space, arising from uneven neighborhood populations and heightened intra-city churn in popular neighborhoods. Therefore, our model can facilitate location-aware mobility reduction policy that more effectively mitigates disease transmission at similar social cost. Finally, we demonstrate our model can serve as a fine-grained analytic and simulation framework that informs the design of rational non-pharmaceutical interventions policies.

قيم البحث

اقرأ أيضاً

Social distancing remains an important strategy to combat the COVID-19 pandemic in the United States. However, the impacts of specific state-level policies on mobility and subsequent COVID-19 case trajectories have not been completely quantified. Usi ng anonymized and aggregated mobility data from opted-in Google users, we found that state-level emergency declarations resulted in a 9.9% reduction in time spent away from places of residence. Implementation of one or more social distancing policies resulted in an additional 24.5% reduction in mobility the following week, and subsequent shelter-in-place mandates yielded an additional 29.0% reduction. Decreases in mobility were associated with substantial reductions in case growth 2 to 4 weeks later. For example, a 10% reduction in mobility was associated with a 17.5% reduction in case growth 2 weeks later. Given the continued reliance on social distancing policies to limit the spread of COVID-19, these results may be helpful to public health officials trying to balance infection control with the economic and social consequences of these policies.
The transmission of COVID-19 is dependent on social contacts, the rate of which have varied during the pandemic due to mandated and voluntary social distancing. Changes in transmission dynamics eventually affect hospital admissions and we have used t his connection in order to model and predict regional hospital admissions in Sweden during the COVID-19 pandemic. We use an SEIR-model for each region in Sweden in which the infectivity is assumed to depend on mobility data in terms of public transport utilisation and mobile phone usage. The results show that the model can capture the timing of the first and beginning of the second wave of the pandemic. Further, we show that for two major regions of Sweden models with public transport data outperform models using mobile phone usage. The model assumes a three week delay from disease transmission to hospitalisation which makes it possible to use current mobility data to predict future admissions.
The outbreak of COVID-19 highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has been proved to be associated with the viral transmission. In this study, we analyzed 587 million tweets worldwide to see how global collaborative efforts in reducing human mobility are reflected from the user-generated information at the global, country, and the U.S. state scale. Considering the multifaceted nature of mobility, we propose two types of distance: the single-day distance and the cross-day distance. To quantify the responsiveness in certain geographical regions, we further propose a mobility-based responsive index (MRI) that captures the overall degree of mobility changes within a time window. The results suggest that mobility patterns obtained from Twitter data are amendable to quantitatively reflect the mobility dynamics. Globally, the proposed two distances had greatly deviated from their baselines after March 11, 2020, when WHO declared COVID-19 as a pandemic. The considerably less periodicity after the declaration suggests that the protection measures have obviously affected peoples travel routines. The country scale comparisons reveal the discrepancies in responsiveness, evidenced by the contrasting mobility patterns in different epidemic phases. We find that the triggers of mobility changes correspond well with the national announcements of mitigation measures. In the U.S., the influence of the COVID-19 pandemic on mobility is distinct. However, the impacts varied substantially among states. The strong mobility recovering momentum is further fueled by the Black Lives Matter protests, potentially fostering the second wave of infections in the U.S.
OBJECTIVES: to describe the first wave of the COVID-19 pandemic with a focus on undetected cases and to evaluate different post-lockdown scenarios. DESIGN: the study introduces a SEIR compartmental model, taking into account the region-specific fract ion of undetected cases, the effects of mobility restrictions, and the personal protective measures adopted, such as wearing a mask and washing hands frequently. SETTING AND PARTICIPANTS: the model is experimentally validated with data of all the Italian regions, some European countries, and the US. MAIN OUTCOME MEASURES: the accuracy of the model results is measured through the mean absolute percentage error (MAPE) and Lewis criteria; fitting parameters are in good agreement with previous literature. RESULTS: the epidemic curves for different countries and the amount of undetected and asymptomatic cases are estimated, which are likely to represent the main source of infections in the near future. The model is applied to the Hubei case study, which is the first place to relax mobility restrictions. Results show different possible scenarios. Mobility and the adoption of personal protective measures greatly influence the dynamics of the infection, determining either a huge and rapid secondary epidemic peak or a more delayed and manageable one. CONCLUSIONS: mathematical models can provide useful insights for healthcare decision makers to determine the best strategy in case of future outbreaks.
128 - R. Jayatilaka , R. Patel , M. Brar 2021
Disease transmission is studied through disciplines like epidemiology, applied mathematics, and statistics. Mathematical simulation models for transmission have implications in solving public and personal health challenges. The SIR model uses a compa rtmental approach including dynamic and nonlinear behavior of transmission through three factors: susceptible, infected, and removed (recovered and deceased) individuals. Using the Lambert W Function, we propose a framework to study solutions of the SIR model. This demonstrates the applications of COVID-19 transmission data to model the spread of a real-world disease. Different models of disease including the SIR, SIRm and SEIR model are compared with respect to their ability to predict disease spread. Physical distancing impacts and personal protection equipment use will be discussed in relevance to the COVID-19 spread.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا