ﻻ يوجد ملخص باللغة العربية
Rowhammer attacks that corrupt level-1 page tables to gain kernel privilege are the most detrimental to system security and hard to mitigate. However, recently proposed software-only mitigations are not effective against such kernel privilege escalation attacks. In this paper, we propose an effective and practical software-only defense, called SoftTRR, to protect page tables from all existing rowhammer attacks on x86. The key idea of SoftTRR is to refresh the rows occupied by page tables when a suspicious rowhammer activity is detected. SoftTRR is motivated by DRAM-chip-based target row refresh (ChipTRR) but eliminates its main security limitation (i.e., ChipTRR tracks a limited number of rows and thus can be bypassed by many-sided hammer). Specifically, SoftTRR protects an unlimited number of page tables by tracking memory accesses to the rows that are in close proximity to page-table rows and refreshing the page-table rows once the tracked access count exceeds a pre-defined threshold. We implement a prototype of SoftTRR as a loadable kernel module, and evaluate its security effectiveness, performance overhead, and memory consumption. The experimental results show that SoftTRR protects page tables from real-world rowhammer attacks and incurs small performance overhead as well as memory cost.
After a plethora of high-profile RowHammer attacks, CPU and DRAM vendors scrambled to deliver what was meant to be the definitive hardware solution against the RowHammer problem: Target Row Refresh (TRR). A common belief among practitioners is that,
Moving Target Defense (MTD) has emerged as a newcomer into the asymmetric field of attack and defense, and shuffling-based MTD has been regarded as one of the most effective ways to mitigate DDoS attacks. However, previous work does not acknowledge t
With the boom of edge intelligence, its vulnerability to adversarial attacks becomes an urgent problem. The so-called adversarial example can fool a deep learning model on the edge node to misclassify. Due to the property of transferability, the adve
Training high performance Deep Neural Networks (DNNs) models require large-scale and high-quality datasets. The expensive cost of collecting and annotating large-scale datasets make the valuable datasets can be considered as the Intellectual Property
Machine learning (ML) has progressed rapidly during the past decade and ML models have been deployed in various real-world applications. Meanwhile, machine learning models have been shown to be vulnerable to various security and privacy attacks. One