ﻻ يوجد ملخص باللغة العربية
Germanium is the detector material of choice in many rare-event searches looking for low-energy nuclear recoils induced by dark matter particles or neutrinos. We perform a systematic exploration of its quenching factor for sub-keV nuclear recoils, using multiple techniques: photo-neutron sources, recoils from gamma-emission following thermal neutron capture, and a monochromatic filtered neutron beam. Our results point to a marked deviation from the predictions of the Lindhard model in this mostly unexplored energy range. We comment on the compatibility of our data with low-energy processes such as the Migdal effect, and on the impact of our measurements on upcoming searches.
We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils are produced by low-energy neutrons ($<$24 keV) from a $^{124}$Sb-$^{9}
Germanium detectors with sub-keV sensitivities open a window to search for low-mass WIMP dark matter. The CDEX-TEXONO Collaboration is conducting the first research program at the new China Jinping Underground Laboratory with this approach. The statu
We study the response of EJ-301 liquid scintillator to monochromatic 244.6 $pm$ 8.4 keV neutrons, targeting the 10-100 keV proton recoil energy interval. Limited experimental information exists for proton light yield in this range, for this or any ot
Results from the nuclear recoil calibration of the XENON100 dark matter detector installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), Italy are presented. Data from measurements with an external 241AmBe neutron source are compared
The heat quenching factor Q (the ratio of the heat signals produced by nuclear and electron recoils of equal energy) of the heat-and-ionization germanium bolometers used by the EDELWEISS collaboration has been measured. It is explained how this facto