ترغب بنشر مسار تعليمي؟ اضغط هنا

Pose Guided Person Image Generation with Hidden p-Norm Regression

87   0   0.0 ( 0 )
 نشر من قبل Ting-Yao Hu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a novel approach to solve the pose guided person image generation task. We assume that the relation between pose and appearance information can be described by a simple matrix operation in hidden space. Based on this assumption, our method estimates a pose-invariant feature matrix for each identity, and uses it to predict the target appearance conditioned on the target pose. The estimation process is formulated as a p-norm regression problem in hidden space. By utilizing the differentiation of the solution of this regression problem, the parameters of the whole framework can be trained in an end-to-end manner. While most previous works are only applicable to the supervised training and single-shot generation scenario, our method can be easily adapted to unsupervised training and multi-shot generation. Extensive experiments on the challenging Market-1501 dataset show that our method yields competitive performance in all the aforementioned variant scenarios.



قيم البحث

اقرأ أيضاً

113 - Yurui Ren , Ge Li , Shan Liu 2020
Pose-guided person image generation and animation aim to transform a source person image to target poses. These tasks require spatial manipulation of source data. However, Convolutional Neural Networks are limited by the lack of ability to spatially transform the inputs. In this paper, we propose a differentiable global-flow local-attention framework to reassemble the inputs at the feature level. This framework first estimates global flow fields between sources and targets. Then, corresponding local source feature patches are sampled with content-aware local attention coefficients. We show that our framework can spatially transform the inputs in an efficient manner. Meanwhile, we further model the temporal consistency for the person image animation task to generate coherent videos. The experiment results of both image generation and animation tasks demonstrate the superiority of our model. Besides, additional results of novel view synthesis and face image animation show that our model is applicable to other tasks requiring spatial transformation. The source code of our project is available at https://github.com/RenYurui/Global-Flow-Local-Attention.
Generating photorealistic images of human subjects in any unseen pose have crucial applications in generating a complete appearance model of the subject. However, from a computer vision perspective, this task becomes significantly challenging due to the inability of modelling the data distribution conditioned on pose. Existing works use a complicated pose transformation model with various additional features such as foreground segmentation, human body parsing etc. to achieve robustness that leads to computational overhead. In this work, we propose a simple yet effective pose transformation GAN by utilizing the Residual Learning method without any additional feature learning to generate a given human image in any arbitrary pose. Using effective data augmentation techniques and cleverly tuning the model, we achieve robustness in terms of illumination, occlusion, distortion and scale. We present a detailed study, both qualitative and quantitative, to demonstrate the superiority of our model over the existing methods on two large datasets.
Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address bot h problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on the pose. The model is based on a generative adversarial network (GAN) designed specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and complementary to features learned with the original images. Importantly, under the transfer learning setting, we show that our model generalizes well to any new re-id dataset without the need for collecting any training data for model fine-tuning. The model thus has the potential to make re-id model truly scalable.
We present a new deep learning approach to pose-guided resynthesis of human photographs. At the heart of the new approach is the estimation of the complete body surface texture based on a single photograph. Since the input photograph always observes only a part of the surface, we suggest a new inpainting method that completes the texture of the human body. Rather than working directly with colors of texture elements, the inpainting network estimates an appropriate source location in the input image for each element of the body surface. This correspondence field between the input image and the texture is then further warped into the target image coordinate frame based on the desired pose, effectively establishing the correspondence between the source and the target view even when the pose change is drastic. The final convolutional network then uses the established correspondence and all other available information to synthesize the output image. A fully-convolutional architecture with deformable skip connections guided by the estimated correspondence field is used. We show state-of-the-art result for pose-guided image synthesis. Additionally, we demonstrate the performance of our system for garment transfer and pose-guided face resynthesis.
127 - Xingran Zhou , Siyu Huang , Bin Li 2019
This paper presents a novel method to manipulate the visual appearance (pose and attribute) of a person image according to natural language descriptions. Our method can be boiled down to two stages: 1) text guided pose generation and 2) visual appear ance transferred image synthesis. In the first stage, our method infers a reasonable target human pose based on the text. In the second stage, our method synthesizes a realistic and appearance transferred person image according to the text in conjunction with the target pose. Our method extracts sufficient information from the text and establishes a mapping between the image space and the language space, making generating and editing images corresponding to the description possible. We conduct extensive experiments to reveal the effectiveness of our method, as well as using the VQA Perceptual Score as a metric for evaluating the method. It shows for the first time that we can automatically edit the person image from the natural language descriptions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا