ترغب بنشر مسار تعليمي؟ اضغط هنا

TransMask: A Compact and Fast Speech Separation Model Based on Transformer

56   0   0.0 ( 0 )
 نشر من قبل Zining Zhang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Speech separation is an important problem in speech processing, which targets to separate and generate clean speech from a mixed audio containing speech from different speakers. Empowered by the deep learning technologies over sequence-to-sequence domain, recent neural speech separation models are now capable of generating highly clean speech audios. To make these models more practical by reducing the model size and inference time while maintaining high separation quality, we propose a new transformer-based speech separation approach, called TransMask. By fully un-leashing the power of self-attention on long-term dependency exception, we demonstrate the size of TransMask is more than 60% smaller and the inference is more than 2 times faster than state-of-the-art solutions. TransMask fully utilizes the parallelism during inference, and achieves nearly linear inference time within reasonable input audio lengths. It also outperforms existing solutions on output speech audio quality, achieving SDR above 16 over Librimix benchmark.



قيم البحث

اقرأ أيضاً

Deep neural network with dual-path bi-directional long short-term memory (BiLSTM) block has been proved to be very effective in sequence modeling, especially in speech separation, e.g. DPRNN-TasNet cite{luo2019dual}. In this paper, we propose several improvements of dual-path BiLSTM based network for end-to-end approach to monaural speech separation. Firstly a dual-path network with intra-parallel BiLSTM and inter-parallel BiLSTM components is introduced to reduce performance sub-variances among different branches. Secondly, we propose to use global context aware inter-intra cross-parallel BiLSTM to further perceive the global contextual information. Finally, a spiral multi-stage dual-path BiLSTM is proposed to iteratively refine the separation results of the previous stages. All these networks take the mixed utterance of two speakers and map it to two separate utterances, where each utterance contains only one speakers voice. For the objective, we propose to train the network by directly optimizing the utterance level scale-invariant signal-to-distortion ratio (SI-SDR) in a permutation invariant training (PIT) style. Our experiments on the public WSJ0-2mix data corpus results in 20.55dB SDR improvement, 20.35dB SI-SDR improvement, 3.69 of PESQ, and 94.86% of ESTOI, which shows our proposed networks can lead to performance improvement on the speaker separation task. We have open-sourced our re-implementation of the DPRNN-TasNet in https://github.com/ShiZiqiang/dual-path-RNNs-DPRNNs-based-speech-separation, and our LaFurca is realized based on this implementation of DPRNN-TasNet, it is believed that the results in this paper can be reproduced with ease.
Recently, dual-path networks have achieved promising performance due to their ability to model local and global features of the input sequence. However, previous studies are based on simple time-domain features and do not fully investigate the impact of the input features of the dual-path network on the enhancement performance. In this paper, we propose a dual-path transformer-based full-band and sub-band fusion network (DPT-FSNet) for speech enhancement in the frequency domain. The intra and inter parts of the dual-path transformer network in our model can be seen as sub-band and full-band modeling respectively, which have stronger interpretability as well as more information compared to the features utilized by the time-domain transformer. We conducted experiments on the Voice Bank + DEMAND dataset to evaluate the proposed method. Experimental results show that the proposed method outperforms the current state-of-the-arts in terms of PESQ, STOI, CSIG, COVL. (The PESQ, STOI, CSIG, and COVL scores on the Voice Bank + DEMAND dataset were 3.30, 0.95, 4.51, and 3.94, respectively).
Most speech separation methods, trying to separate all channel sources simultaneously, are still far from having enough general- ization capabilities for real scenarios where the number of input sounds is usually uncertain and even dynamic. In this w ork, we employ ideas from auditory attention with two ears and propose a speaker and direction inferred speech separation network (dubbed SDNet) to solve the cocktail party problem. Specifically, our SDNet first parses out the respective perceptual representations with their speaker and direction characteristics from the mixture of the scene in a sequential manner. Then, the perceptual representations are utilized to attend to each corresponding speech. Our model gener- ates more precise perceptual representations with the help of spatial features and successfully deals with the problem of the unknown number of sources and the selection of outputs. The experiments on standard fully-overlapped speech separation benchmarks, WSJ0- 2mix, WSJ0-3mix, and WSJ0-2&3mix, show the effectiveness, and our method achieves SDR improvements of 25.31 dB, 17.26 dB, and 21.56 dB under anechoic settings. Our codes will be released at https://github.com/aispeech-lab/SDNet.
331 - Yihui Fu , Jian Wu , Yanxin Hu 2020
In this paper, we propose a multi-channel network for simultaneous speech dereverberation, enhancement and separation (DESNet). To enable gradient propagation and joint optimization, we adopt the attentional selection mechanism of the multi-channel f eatures, which is originally proposed in end-to-end unmixing, fixed-beamforming and extraction (E2E-UFE) structure. Furthermore, the novel deep complex convolutional recurrent network (DCCRN) is used as the structure of the speech unmixing and the neural network based weighted prediction error (WPE) is cascaded beforehand for speech dereverberation. We also introduce the staged SNR strategy and symphonic loss for the training of the network to further improve the final performance. Experiments show that in non-dereverberated case, the proposed DESNet outperforms DCCRN and most state-of-the-art structures in speech enhancement and separation, while in dereverberated scenario, DESNet also shows improvements over the cascaded WPE-DCCRN networks.
Reverberation, which is generally caused by sound reflections from walls, ceilings, and floors, can result in severe performance degradation of acoustic applications. Due to a complicated combination of attenuation and time-delay effects, the reverbe ration property is difficult to characterize, and it remains a challenging task to effectively retrieve the anechoic speech signals from reverberation ones. In the present study, we proposed a novel integrated deep and ensemble learning algorithm (IDEA) for speech dereverberation. The IDEA consists of offline and online phases. In the offline phase, we train multiple dereverberation models, each aiming to precisely dereverb speech signals in a particular acoustic environment; then a unified fusion function is estimated that aims to integrate the information of multiple dereverberation models. In the online phase, an input utterance is first processed by each of the dereverberation models. The outputs of all models are integrated accordingly to generate the final anechoic signal. We evaluated the IDEA on designed acoustic environments, including both matched and mismatched conditions of the training and testing data. Experimental results confirm that the proposed IDEA outperforms single deep-neural-network-based dereverberation model with the same model architecture and training data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا