ترغب بنشر مسار تعليمي؟ اضغط هنا

xCOLDGASS and xGASS: Radial metallicity gradients and global properties on the star-forming main sequence

290   0   0.0 ( 0 )
 نشر من قبل Katharina Lutz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. The xGASS and xCOLD GASS surveys have measured the atomic (HI) and molecular gas (H2) content of a large and representative sample of nearby galaxies (redshift range of 0.01 $lt$ z $lt$ 0.05). Aims. We present optical longslit spectra for a subset of the xGASS and xCOLD GASS galaxies to investigate the correlation between radial metallicity profiles and cold gas content. In addition to data from Moran et al. (2012), this paper presents new optical spectra for 27 galaxies in the stellar mass range of 9.0 $leq$ log Mstar/Msun $leq$ 10.0. Methods. The longslit spectra were taken along the major axis of the galaxies, allowing us to obtain radial profiles of the gas-phase oxygen abundance (12 + log(O/H)). The slope of a linear fit to these radial profiles is defined as the metallicity gradient. We investigated correlations between these gradients and global galaxy properties, such as star formation activity and gas content. In addition, we examined the correlation of local metallicity measurements and the global HI mass fraction. Results. We obtained two main results: (i) the local metallicity is correlated with the global HI mass fraction, which is in good agreement with previous results. A simple toy model suggests that this correlation points towards a local gas regulator model; (ii) the primary driver of metallicity gradients appears to be stellar mass surface density (as a proxy for morphology). Conclusions. This work comprises one of the few systematic observational studies of the influence of the cold gas on the chemical evolution of star-forming galaxies, as considered via metallicity gradients and local measurements of the gas-phase oxygen abundance. Our results suggest that local density and local HI mass fraction are drivers of chemical evolution and the gas-phase metallicity.

قيم البحث

اقرأ أيضاً

We use our catalogue of structural decomposition measurements for the extended GALEX Arecibo SDSS Survey (xGASS) to study the role of bulges both along and across the galaxy star-forming main sequence (SFMS). We show that the slope in the $sSFR$-$M_{ star}$ relation flattens by $sim$0.1 dex per decade in $M_{star}$ when re-normalising $sSFR$ by disc stellar mass instead of total stellar mass. However, recasting the $sSFR$-$M_{star}$ relation into the framework of only disc-specific quantities shows that a residual trend remains against disc stellar mass with equivalent slope and comparable scatter to that of the total galaxy relation. This suggests that the residual declining slope of the SFMS is intrinsic to the disc components of galaxies. We further investigate the distribution of bulge-to-total ratios ($B/T$) as a function of distance from the SFMS ($Delta SFR_{MS}$). At all stellar masses, the average $B/T$ of local galaxies decreases monotonically with increasing $Delta SFR_{MS}$. Contrary to previous works, we find that the upper-envelope of the SFMS is not dominated by objects with a significant bulge component. This rules out a scenario in which, in the local Universe, objects with increased star formation activity are simultaneously experiencing a significant bulge growth. We suggest that much of the discrepancies between different works studying the role of bulges originates from differences in the methodology of structurally decomposing galaxies.
We argue that the interplay between cosmic rays, the initial mass function, and star formation plays a crucial role in regulating the star-forming main sequence. To explore these phenomena we develop a toy model for galaxy evolution in which star for mation is regulated by a combination of a temperature-dependent initial mass function and heating due to starlight, cosmic rays and, at very high redshift, the cosmic microwave background. This produces an attractor, near-equilibrium solution which is consistent with observations of the star-forming main sequence over a broad redshift range. Additional solutions to the same equations may correspond to other observed phases of galaxy evolution including quiescent galaxies. This model makes several falsifiable predictions, including higher metallicities and dust masses than anticipated at high redshift and isotopic abundances in the Milky Way. It also predicts that stellar mass-to-light ratios are lower than produced using a Milky Way-derived IMF, so that inferences of stellar masses and star formation rates for high redshift galaxies are overestimated. In some cases, this may also transform inferred dark matter profiles from core-like to cusp-like.
Observations have revealed that disturbances in the cold neutral atomic hydrogen (HI) in galaxies are ubiquitous, but the reasons for these disturbances remain unclear. While some studies suggest that asymmetries in integrated HI spectra (global HI a symmetry) are higher in HI-rich systems, others claim that they are preferentially found in HI-poor galaxies. In this work, we utilise the ALFALFA and xGASS surveys, plus a sample of post-merger galaxies, to clarify the link between global HI asymmetry and the gas properties of galaxies. Focusing on star-forming galaxies in ALFALFA, we find that elevated global HI asymmetry is not associated with a change in the HI content of a galaxy, and that only the galaxies with the highest global HI asymmetry show a small increase in specific star-formation rate (sSFR). However, we show that the lack of a trend with HI content is because ALFALFA misses the gas-poor tail of the star-forming main-sequence. Using xGASS to obtain a sample of star-forming galaxies that is representative in both sSFR and HI content, we find that global HI asymmetric galaxies are typically more gas-poor than symmetric ones at fixed stellar mass, with no change in sSFR. Our results highlight the complexity of the connection between galaxy properties and global HI asymmetry. This is further confirmed by the fact that even post-merger galaxies show both symmetric and asymmetric HI spectra, demonstrating that merger activity does not always lead to an asymmetric global HI spectrum.
The origin of the star forming main sequence ( i.e., the relation between star formation rate and stellar mass, globally or on kpc-scales; hereafter SFMS) remains a hotly debated topic in galaxy evolution. Using the ALMA-MaNGA QUEnching and STar form ation (ALMaQUEST) survey, we show that for star forming spaxels in the main sequence galaxies, the three local quantities, star-formation rate surface density (sigsfr), stellar mass surface density (sigsm), and the h2~mass surface density (sigh2), are strongly correlated with one another and form a 3D linear (in log) relation with dispersion. In addition to the two well known scaling relations, the resolved SFMS (sigsfr~ vs. sigsm) and the Schmidt-Kennicutt relation (sigsfr~ vs. sigh2; SK relation), there is a third scaling relation between sigh2~ and sigsm, which we refer to as the `molecular gas main sequence (MGMS). The latter indicates that either the local gas mass traces the gravitational potential set by the local stellar mass or both quantities follow the underlying total mass distributions. The scatter of the resolved SFMS ($sigma sim 0.25$ dex) is the largest compared to those of the SK and MGMS relations ($sigma sim$ 0.2 dex). A Pearson correlation test also indicates that the SK and MGMS relations are more strongly correlated than the resolved SFMS. Our result suggests a scenario in which the resolved SFMS is the least physically fundamental and is the consequence of the combination of the SK and the MGMS relations.
144 - Weichen Wang 2017
This paper uses radial colour profiles to infer the distributions of dust, gas and star formation in z=0.4-1.4 star-forming main sequence galaxies. We start with the standard UVJ-based method to estimate dust extinction and specific star formation ra te (sSFR). By replacing J with I band, a new calibration method suitable for use with ACS+WFC3 data is created (i.e. UVI diagram). Using a multi-wavelength multi-aperture photometry catalogue based on CANDELS, UVI colour profiles of 1328 galaxies are stacked in stellar mass and redshift bins. The resulting colour gradients, covering a radial range of 0.2--2.0 effective radii, increase strongly with galaxy mass and with global $A_V$. Colour gradient directions are nearly parallel to the Calzetti extinction vector, indicating that dust plays a more important role than stellar population variations. With our calibration, the resulting $A_V$ profiles fall much more slowly than stellar mass profiles over the measured radial range. sSFR gradients are nearly flat without central quenching signatures, except for $M_*>10^{10.5} M_{odot}$, where central declines of 20--25 per cent are observed. Both sets of profiles agree well with previous radial sSFR and (continuum) $A_V$ measurements. They are also consistent with the sSFR profiles and, if assuming a radially constant gas-to-dust ratio, gas profiles in recent hydrodynamic models. We finally discuss the striking findings that SFR scales with stellar mass density in the inner parts of galaxies, and that dust content is high in the outer parts despite low stellar-mass surface densities there.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا