ترغب بنشر مسار تعليمي؟ اضغط هنا

Slow dynamics of disordered zigzag chain molecules in layered LiVS2 under electron irradiation

80   0   0.0 ( 0 )
 نشر من قبل Naoyuki Katayama Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic instabilities in transition metal compounds often spontaneously form orbital molecules, which consist of orbital-coupled metal ions at low temperature. Recent local structural studies utilizing the pair distribution function revealed that preformed orbital molecules appear disordered even in the high-temperature paramagnetic phase. However, it is unclear whether preformed orbital molecules are dynamic or static. Here, we provide clear experimental evidence of the slow dynamics of disordered orbital molecules realized in the high-temperature paramagnetic phase of LiVS2, which exhibits vanadium trimerization upon cooling below 314 K. Unexpectedly, the preformed orbital molecules appear as a disordered zigzag chain that fluctuate in both time and space under electron irradiation. Our findings should advance studies on soft matter physics realized in an inorganic material due to disordered orbital molecules.

قيم البحث

اقرأ أيضاً

We study spin transport in a Hubbard chain with strong, random, on--site potential and with spin--dependent hopping integrals, $t_{sigma}$. For the the SU(2) symmetric case, $t_{uparrow} =t_{downarrow}$, such model exhibits only partial many-body loc alization with localized charge and (delocalized) subdiffusive spin excitations. Here, we demonstrate that breaking the SU(2) symmetry by even weak spin--asymmetry, $t_{uparrow} e t_{downarrow}$, localizes spins and restores full many-body localization. To this end we derive an effective spin model, where the spin subdiffusion is shown to be destroyed by arbitrarily weak $t_{uparrow} e t_{downarrow}$. Instability of the spin subdiffusion originates from an interplay between random effective fields and singularly distributed random exchange interactions.
We report a single-crystal study on the magnetism of the rare-earth compound PrTiNbO$_6$ that experimentally realizes the zigzag pseudospin-$frac{1}{2}$ quantum antiferromagnetic chain model. Random crystal electric field caused by the site mixing be tween non-magnetic Ti$^{4+}$ and Nb$^{5+}$, results in the non-Kramers ground state quasi-doublet of Pr$^{3+}$ with the effective pseudospin-$frac{1}{2}$ Ising moment. Despite the antiferromagnetic intersite coupling of about 4 K, no magnetic freezing is detected down to 0.1 K, whilst the system approaches its ground state with almost zero residual spin entropy. At low temperatures, a sizable gap of about 1 K is observed in zero field. We ascribe this gap to off-diagonal anisotropy terms in the pseudospin Hamiltonian, and argue that rare-earth oxides open an interesting venue for studying magnetism of quantum spin chains.
Using powder neutron diffraction we have discovered an unusual magnetic order-order transition in the Ising spin chain compound Ca3Co2O6. On lowering the temperature an antiferromagnetic phase with propagation vector k=(0.5,-0.5,1) emerges from a hig her temperature spin density wave structure with k=(0, 0, 1.01). This transition occurs over an unprecedented time-scale of several hours and is never complete.
We present field effect measurements on discontinuous 2D thin films which are composed of a sub monolayer of nano-grains of Au, Ni, Ag or Al. Like other electron glasses these systems exhibit slow conductance relaxation and memory effects. However, u nlike other systems, the discontinuous films exhibit a dramatic slowing down of the dynamics below a characteristic temperature $T^*$. $T^*$ is typically between 10-50K and is sample dependent. For $T<T^*$ the sample exhibits a few other peculiar features such as repeatable conductance fluctuations in millimeter size samples. We suggest that the enhanced system sluggishness is related to the current carrying network becoming very dilute in discontinuous films so that the system contains many parts which are electrically very weakly connected and the transport is dominated by very few weak links. This enables studying the glassy properties of the sample as it transitions from a macroscopic sample to a mesocopic sample, hence, the results provide new insight on the underlying physics of electron glasses.
Healing of a hole in a carbon nanotube under electron irradiation in HRTEM at room temperature is demonstrated using molecular dynamics simulations with the CompuTEM algorithm. Formation of an amorphous patch is observed in all simulation runs. The a morphous patch is formed in the absence of external carbon adatoms only via reconstruction of the carbon bond network. It consists mainly of 5-, 6- and 7-membered rings and causes a small bottleneck. In addition, further growth of the initial amorphous patch under electron irradiation takes place. Two-coordinated atoms are found to play a crucial role in the latter process, analogous to autocatalisys of rearrangements of rings in fullerenes. The principal rearrangements in the presence of two-coordinated atoms can be described as generalized sp-defect migration: a bond is broken between two three-coordinated atoms and one of them forms a new bond with a nearby two-coordinated atom. If the new and former two-coordinated atoms are not bonded, the reaction leads both to displacement of the sp defect and changes in rings of the sp$^2$ carbon structure. Migration by hopping of two-coordinated atoms and other reactions involving simultaneous breakage of two bonds are also detected but much rarely. Long-living two-coordinated atoms in the patch structure and related fast growth of the patch are observed in more than half of the simulation runs. Since the amorphous patch and bottleneck affect the electronic properties of the nanotube, such nanotubes can be perspective for nanoelectronic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا