ﻻ يوجد ملخص باللغة العربية
Crowdsourced testing is increasingly dominant in mobile application (app) testing, but it is a great burden for app developers to inspect the incredible number of test reports. Many researches have been proposed to deal with test reports based only on texts or additionally simple image features. However, in mobile app testing, texts contained in test reports are condensed and the information is inadequate. Many screenshots are included as complements that contain much richer information beyond texts. This trend motivates us to prioritize crowdsourced test reports based on a deep screenshot understanding. In this paper, we present a novel crowdsourced test report prioritization approach, namely DeepPrior. We first represent the crowdsourced test reports with a novelly introduced feature, namely DeepFeature, that includes all the widgets along with their texts, coordinates, types, and even intents based on the deep analysis of the app screenshots, and the textual descriptions in the crowdsourced test reports. DeepFeature includes the Bug Feature, which directly describes the bugs, and the Context Feature, which depicts the thorough context of the bug. The similarity of the DeepFeature is used to represent the test reports similarity and prioritize the crowdsourced test reports. We formally define the similarity as DeepSimilarity. We also conduct an empirical experiment to evaluate the effectiveness of the proposed technique with a large dataset group. The results show that DeepPrior is promising, and it outperforms the state-of-the-art approach with less than half the overhead.
Crowdsourced testing, as a distinct testing paradigm, has attracted much attention in software testing, especially in mobile application (app) testing field. Compared with in-house testing, crowdsourced testing outperforms because it utilize the dive
Testing is the most direct and effective technique to ensure software quality. However, it is a burden for developers to understand the poorly-commented tests, which are common in industry environment projects. Mobile applications (app) are GUI-inten
We introduce a new logic named Quantitative Confidence Logic (QCL) that quantifies the level of confidence one has in the conclusion of a proof. By translating a fault tree representing a systems architecture to a proof, we show how to use QCL to giv
It is integral to test API functions of widely used deep learning (DL) libraries. The effectiveness of such testing requires DL specific input constraints of these API functions. Such constraints enable the generation of valid inputs, i.e., inputs th
Graphical User Interface (GUI) provides a visual bridge between a software application and end users, through which they can interact with each other. With the development of technology and aesthetics, the visual effects of the GUI are more and more