ﻻ يوجد ملخص باللغة العربية
We propose a two-population lattice Boltzmann model on standard lattices for the simulation of compressible flows. The model is fully on-lattice and uses the single relaxation time Bhatnagar-Gross-Krook kinetic equations along with appropriate correction terms to recover the Navier-Stokes-Fourier equations. The accuracy and performance of the model are analyzed through simulations of compressible benchmark cases including Sod shock tube, sound generation in shock-vortex interaction and compressible decaying turbulence in a box with eddy shocklets. It is demonstrated that the present model provides an accurate representation of compressible flows, even in the presence of turbulence and shock waves.
Conventional lattice Boltzmann models for the simulation of fluid dynamics are restricted by an error in the stress tensor that is negligible only for vanishing flow velocity and at a singular value of the temperature. To that end, we propose a unifi
The squirmer is a simple yet instructive model for microswimmers, which employs an effective slip velocity on the surface of a spherical swimmer to describe its self-propulsion. We solve the hydrodynamic flow problem with the lattice Boltzmann (LB) m
A new lattice Boltzmann model for multicomponent ideal gas mixtures is presented. The model development consists of two parts. First, a new kinetic model for Stefan- Maxwell diffusion amongst the species is proposed and realized as a lattice Boltzman
A new lattice Boltzmann model (LBM) for chemically reactive mixtures is presented. The approach capitalizes on the recently introduced thermodynamically consistent LBM for multicomponent mixtures of ideal gases. Similar to the non-reactive case, the
A new lattice Boltzmann model for reactive ideal gas mixtures is presented. The model is an extension to reactive flows of the recently proposed multi-component lattice Boltzmann model for compressible ideal gas mixtures with Stefan-Maxwell diffusion