ترغب بنشر مسار تعليمي؟ اضغط هنا

Khinchin-type inequalities via Hadamards factorisation

162   0   0.0 ( 0 )
 نشر من قبل Alex Havrilla
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove Khinchin-type inequalities with sharp constants for type L random variables and all even moments. Our main tool is Hadamards factorisation theorem from complex analysis, combined with Newtons inequalities for elementary symmetric functions. Besides the case of independent summands, we also treat ferromagnetic dependencies in a nonnegative external magnetic field (thanks to Newmans generalisation of the Lee-Yang theorem). Lastly, we compare the notions of type L, ultra sub-Gaussianity (introduced by Nayar and Oleszkiewicz) and strong log-concavity (introduced by Gurvits), with the latter two being equivalent.



قيم البحث

اقرأ أيضاً

We establish several optimal moment comparison inequalities (Khinchin-type inequalities) for weighted sums of independent identically distributed symmetric discrete random variables which are uniform on sets of consecutive integers. Specifically, we obtain sharp constants for the second moment and any moment of order at least 3 (using convex dominance by Gaussian random variables). In the case of only 3 atoms, we also establish a Schur-convexity result. For moments of order less than 2, we get sharp constants in two cases by exploiting Haagerups arguments for random signs.
We establish a sharp moment comparison inequality between an arbitrary negative moment and the second moment for sums of independent uniform random variables, which extends Balls cube slicing inequality.
Consider a parabolic stochastic PDE of the form $partial_t u=frac{1}{2}Delta u + sigma(u)eta$, where $u=u(t,,x)$ for $tge0$ and $xinmathbb{R}^d$, $sigma:mathbb{R}rightarrowmathbb{R}$ is Lipschitz continuous and non random, and $eta$ is a centered Gau ssian noise that is white in time and colored in space, with a possibly-signed homogeneous spatial correlation $f$. If, in addition, $u(0)equiv1$, then we prove that, under a mild decay condition on $f$, the process $xmapsto u(t,,x)$ is stationary and ergodic at all times $t>0$. It has been argued that, when coupled with moment estimates, spatial ergodicity of $u$ teaches us about the intermittent nature of the solution to such SPDEs cite{BertiniCancrini1995,KhCBMS}. Our results provide rigorous justification of such discussions. Our methods hinge on novel facts from harmonic analysis and functions of positive type, as well as from Malliavin calculus and Poincare inequalities. We further showcase the utility of these Poincare inequalities by: (a) describing conditions that ensure that the random field $u(t)$ is mixing for every $t>0$; and by (b) giving a quick proof of a conjecture of Conus et al cite{CJK12} about the size of the intermittency islands of $u$. The ergodicity and the mixing results of this paper are sharp, as they include the classical theory of Maruyama cite{Maruyama} (see also Dym and McKean cite{DymMcKean}) in the simple setting where the nonlinear term $sigma$ is a constant function.
170 - J.-R. Chazottes , F. Redig 2010
We obtain moment and Gaussian bounds for general Lipschitz functions evaluated along the sample path of a Markov chain. We treat Markov chains on general (possibly unbounded) state spaces via a coupling method. If the first moment of the coupling tim e exists, then we obtain a variance inequality. If a moment of order 1+epsilon of the coupling time exists, then depending on the behavior of the stationary distribution, we obtain higher moment bounds. This immediately implies polynomial concentration inequalities. In the case that a moment of order 1+epsilon is finite uniformly in the starting point of the coupling, we obtain a Gaussian bound. We illustrate the general results with house of cards processes, in which both uniform and non-uniform behavior of moments of the coupling time can occur.
Concentration properties of functionals of general Poisson processes are studied. Using a modified $Phi$-Sobolev inequality a recursion scheme for moments is established, which is of independent interest. This is applied to derive moment and concentr ation inequalities for functionals on abstract Poisson spaces. Applications of the general results in stochastic geometry, namely Poisson cylinder models and Poisson random polytopes, are presented as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا