ﻻ يوجد ملخص باللغة العربية
Software-implementation, via neural networks, of brain-inspired computing approaches underlie many important modern-day computational tasks, from image processing to speech recognition, artificial intelligence and deep learning applications. Yet, differing from real neural tissue, traditional computing architectures physically separate the core computing functions of memory and processing, making fast, efficient and low-energy brain-like computing difficult to achieve. To overcome such limitations, an attractive and alternative goal is to design direct hardware mimics of brain neurons and synapses which, when connected in appropriate networks (or neuromorphic systems), process information in a way more fundamentally analogous to that of real brains. Here we present an all-optical approach to achieving such a goal. Specifically, we demonstrate an all-optical spiking neuron device and connect it, via an integrated photonics network, to photonic synapses to deliver a small-scale all-optical neurosynaptic system capable of supervised and unsupervised learning. Moreover, we exploit wavelength division multiplexing techniques to implement a scalable circuit architecture for photonic neural networks, successfully demonstrating pattern recognition directly in the optical domain using a photonic system comprising 140 elements. Such optical implementations of neurosynaptic networks promise access to the high speed and bandwidth inherent to optical systems, which would be very attractive for the direct processing of telecommunication and visual data in the optical domain.
Deeplearning algorithms are revolutionising many aspects of modern life. Typically, they are implemented in CMOS-based hardware with severely limited memory access times and inefficient data-routing. All-optical neural networks without any electro-optic
Optical implementation of artificial neural networks has been attracting great attention due to its potential in parallel computation at speed of light. Although all-optical deep neural networks (AODNNs) with a few neurons have been experimentally de
All-optical binary convolution with a photonic spiking vertical-cavity surface-emitting laser (VCSEL) neuron is proposed and demonstrated experimentally for the first time. Optical inputs, extracted from digital images and temporally encoded using re
Spiking recurrent neural networks (RNNs) are a promising tool for solving a wide variety of complex cognitive and motor tasks, due to their rich temporal dynamics and sparse processing. However training spiking RNNs on dedicated neuromorphic hardware
As neural networks get widespread adoption in resource-constrained embedded devices, there is a growing need for low-power neural systems. Spiking Neural Networks (SNNs)are emerging to be an energy-efficient alternative to the traditional Artificial