ﻻ يوجد ملخص باللغة العربية
We present a concept of a millimeter wavefront sensor that allows real-time sensing of the surface of a ground-based millimeter/submillimeter telescope. It is becoming important for ground-based millimeter/submillimeter astronomy to make telescopes larger with keeping their surface accurate. To establish `millimetric adaptive optics (MAO) that instantaneously corrects the wavefront degradation induced by deformation of telescope optics, our wavefront sensor based on radio interferometry measures changes in excess path lengths from characteristic positions on the primary mirror surface to the focal plane. This plays a fundamental role in planned 50-m class submillimeter telescopes such as LST and AtLAST.
Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors o
Adaptive optics (AO) is critical in astronomy, optical communications and remote sensing to deal with the rapid blurring caused by the Earths turbulent atmosphere. But current AO systems are limited by their wavefront sensors, which need to be in an
The pyramid wavefront sensor (P-WFS) has replaced the Shack-Hartmann (SH-) WFS as sensor of choice for high performance adaptive optics (AO) systems in astronomy because of its flexibility in pupil sampling, its dynamic range, and its improved sensit
In the present paper, we consider the optical design of a zoom system for the active refocusing in laser guide star wavefront sensors. The system is designed according to the specifications coming from the Extremely Large Telescope (ELT)-HARMONI inst
High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation and high flux ratio. Recen