ﻻ يوجد ملخص باللغة العربية
Growing evidence indicates that the synchrotron radiation mechanism may be responsible for the prompt emission of gamma-ray bursts (GRBs). In the synchrotron radiation scenario, the electron energy spectrum of the prompt emission is diverse in theoretical works and has not been estimated from observations in a general way (i.e., without specifying a certain physical model for the electron spectrum). In this paper, we creatively propose a method to directly estimate the electron spectrum for the prompt emission, without specifying a certain physical model for the electron spectrum in the synchrotron radiation scenario. In this method, an empirical function (i.e., a four-order Bezier curve jointed with a linear function at high-energy) is applied to describe the electron spectrum in log-log coordinate. It is found that our empirical function can well mimic the electron spectra obtained in many numerical calculations or simulations. Then, our method can figure out the electron spectrum for the prompt emission without specifying a model. By employing our method on observations, taking GRB 180720B and GRB 160509A as examples, it is found that the obtained electron spectra are generally different from that in the standard fast-cooling scenario and even a broken power law. Moreover, the morphology of electron spectra in its low-energy regime varies with time in a burst and even in a pulse. Our proposed method provides a valuable way to confront the synchrotron radiation mechanism with observations.
Information on the spectral shape of prompt emission in gamma-ray bursts (GRB) is mostly available only at energies $gtrsim10$ keV, where the main instruments for GRB detection are sensitive. The origin of this emission is still very uncertain becaus
Gamma-ray bursts (GRBs) were first detected thanks to their prompt emission, which was the only information available for decades. In 2010, while the high-energy prompt emission remains the main tool for the detection and the first localization of GR
GRB spectra appear non-thermal, but recent observations of a few bursts with Fermi GBM have confirmed previous indications from BATSE of the presence of an underlying thermal component. Photospheric emission is indeed expected when the relativistic o
High-energy neutrinos are expected to originate from different stages in a gamma-ray burst (GRB) event. In this work we revisit the dissipative photospheric scenario, in which the GRB prompt emission is produced around the photospheric radius. Meanwh
As gamma-ray burst (GRB) jet drills its way through the collapsing star, it traps a baryonic cork ahead of it. Here we explore a prompt emission model for GRBs in which the jet does not cross the cork, but rather photons that are emitted deep in the