ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical Effect of Bottom Electrode on Ferroelectricity of Epitaxial Hf0.5Zr0.5O2 Thin Films

190   0   0.0 ( 0 )
 نشر من قبل Florencio Sanchez
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Epitaxial orthorhombic Hf0.5Zr0.5O2 (HZO) films on La0.67Sr0.33MnO3 (LSMO) electrodes show robust ferroelectricity, with high polarization, endurance and retention. However, no similar results have been achieved using other perovskite electrodes so far. Here, LSMO and other perovskite electrodes are compared. A small amount of orthorhombic phase and low polarization is found in HZO films grown on La-doped BaSnO3 and Nb-doped SrTiO3, while null amounts of orthorhombic phase and polarization are detected in films on LaNiO3 and SrRuO3. The critical effect of the electrode on the stabilized phases is not consequence of differences in the electrode lattice parameter. The interface is critical, and engineering the HZO bottom interface on just a few monolayers of LSMO permits the stabilization of the orthorhombic phase. Furthermore, while the specific divalent ion (Sr or Ca) in the manganite is not relevant, reducing the La content causes a severe reduction of the amount of orthorhombic phase and the ferroelectric polarization in the HZO film.



قيم البحث

اقرأ أيضاً

The metastable orthorhombic phase of hafnia is generally obtained in polycrystalline films, whereas in epitaxial films, its formation has been much less investigated. We have grown Hf0.5Zr0.5O2 films by pulsed laser deposition, and the growth window (temperature and oxygen pressure during deposition and film thickness) for epitaxial stabilization of the ferroelectric phase is mapped. The remnant ferroelectric polarization, up to around 24 uC/cm2, depends on the amount of orthorhombic phase and interplanar spacing and increases with temperature and pressure for a fixed film thickness. The leakage current decreases with an increase in thickness or temperature, or when decreasing oxygen pressure. The coercive electric field (EC) depends on thickness (t) according to the coercive electric field (Ec) - thickness (t)-2/3 scaling, which is observed for the first time in ferroelectric hafnia, and the scaling extends to thicknesses down to around 5 nm. The proven ability to tailor the functional properties of high-quality epitaxial ferroelectric Hf0.5Zr0.5O2 films paves the way toward understanding their ferroelectric properties and prototyping devices.
Doping ferroelectric Hf0.5Zr0.5O2 with La is a promising route to improve endurance. However, the beneficial effect of La on the endurance of polycrystalline films may be accompanied by degradation of the retention. We have investigated the endurance - retention dilemma in La-doped epitaxial films. Compared to undoped epitaxial films, large values of polarization are obtained in a wider thickness range, whereas the coercive fields are similar, and the leakage current is substantially reduced. Compared to polycrystalline La-doped films, epitaxial La-doped films show more fatigue but there is not significant wake-up effect and endurance-retention dilemma. The persistent wake-up effect common to polycrystalline La-doped Hf0.5Zr0.5O2 films, is limited to a few cycles in epitaxial films. Despite fatigue, endurance in epitaxial La-doped films is more than 1010 cycles, and this good property is accompanied by excellent retention of more than 10 years. These results demonstrate that wake-up effect and endurance-retention dilemma are not intrinsic in La-doped Hf0.5Zr0.5O2.
The critical impact of epitaxial stress on the stabilization of the ferroelectric orthorhombic phase of hafnia is proved. Epitaxial bilayers of Hf0.5Zr0.5O2 and La0.67Sr0.33MnO3 electrodes were grown on a set of single crystalline oxide 001-oriented, cubic or pseudocubic setting, substrates with lattice parameter in the 3.71 - 4.21 A range. The lattice strain of the La0.67Sr0.33MnO3 electrode, determined by the lattice mismatch with the substrate, is critical in the stabilization of the orthorhombic phase of Hf0.5Zr0.5O2. On La0.67Sr0.33MnO3 electrodes tensile strained most of the Hf0.5Zr0.5O2 film is orthorhombic, whereas the monoclinic phase is favored when La0.67Sr0.33MnO3 is relaxed or compressively strained. Therefore, the Hf0.5Zr0.5O2 films on TbScO3 and GdScO3 substrates present substantially enhanced ferroelectric polarization in comparison to films on other substrates, including the commonly used SrTiO3. The capability of having epitaxial doped HfO2 films with controlled phase and polarization is of major interest for a better understanding of the ferroelectric properties and paves the way for fabrication of ferroelectric devices based on nanometric HfO2 films.
We studied the ferroelectric and ferromagnetic properties of compressive strained and unstrained BiMnO3 thin films grown by rf-magnetron sputtering. BiMnO3 samples exhibit a 2D cube-on-cube growth mode and a pseudo-cubic struc-ture up to a thickness of 15 nm and of 25 nm when deposited on (001) SrTiO3 and (110) DyScO3, respectively. Above these thicknesses we observe a switching to a 3D island growth and a simultaneous structural change to a monoclinic structure characterized by a (00l) orientation of the monoclinic unit cell. While ferromagnetism is observed below Tc = 100 K for all samples, signatures of room temperature ferroelectricity were found only in the pseudo-cubic ultra-thin films, indicating a correlation between electronic and structural orders.
The unconventional Si-compatible ferroelectricity in hafnia-based systems, which becomes robust only at nanoscopic sizes, has attracted a lot of interest. While a metastable polar orthorhombic (o-) phase (Pca21) is widely regarded as the responsible phase for ferroelectricity, a higher energy polar rhombohedral (r-) phase is recently reported on epitaxial HfZrO4 (HZO) films grown on (001) SrTiO3 (R3m or R3), (0001) GaN (R3), and Si (111). Armed with results on these systems, here we report a systematic study leading towards identifying comprehensive global trends for stabilizing r-phase polymorphs in epitaxially grown HZO thin films (6 nm) on various substrates (perovskites, hexagonal and Si).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا