ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for L4 Earth Trojan Asteroids Using a Novel Track-Before-Detect Multi-Epoch Pipeline

88   0   0.0 ( 0 )
 نشر من قبل Noah Lifset
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Earth Trojan Asteroids are an important but elusive population that co-orbit with Earth at the L4 and L5 Lagrange points. There is only one known, but a large population is theoretically stable and could provide insight into our solar systems past and present as well as planetary defense. In this paper, we present the results of an Earth Trojan survey that uses a novel shift-and-stack detection method on two nights of data from the Dark Energy Camera. We find no new Earth Trojan Asteroids. We calculate an upper limit on the population that is consistent with previous searches despite much less sky coverage. Additionally, we elaborate on previous upper limit calculations using current asteroid population statistics and an extensive asteroid simulation to provide the most up to date population constraints. We find an L4 Earth Trojan population of NET < 1 for H = 13.93, NET < 7 for H = 16, and NET < 938 for H = 22.



قيم البحث

اقرأ أيضاً

We propose a scalable track-before-detect (TBD) tracking method based on a Poisson/multi-Bernoulli model. To limit computational complexity, we approximate the exact multi-Bernoulli mixture posterior probability density function (pdf) by a multi-Bern oulli pdf. Data association based on the sum-product algorithm and recycling of Bernoulli components enable the detection and tracking of low-observable objects with limited computational resources. Our simulation results demonstrate a significantly improved tracking performance compared to a state-of-the-art TBD method.
248 - B. Yan , A. Giorgetti , E. Paolini 2021
Precise localization and tracking of moving non-collaborative persons and objects using a network of ultra-wideband (UWB) radar nodes has been shown to represent a practical and effective approach. In UWB radar sensor networks (RSNs), existence of st rong clutter, weak target echoes, and closely spaced targets are obstacles to achieving a satisfactory tracking performance. Using a track-before-detect (TBD) approach, the waveform obtained by each node during a time period are jointly processed. Both spatial information and temporal relationship between measurements are exploited in generating all possible candidate trajectories and only the best trajectories are selected as the outcome. The effectiveness of the developed TBD technique for UWB RSNs is confirmed by numerical simulations and by two experimental results, both carried out with actual UWB signals. In the first experiment, a human target is tracked by a monostatic radar network with an average localization error of 41.9 cm with no false alarm trajectory in a cluttered outdoor environment. In the second experiment, two targets are detected by multistatic radar network with localization errors of 25.4 cm and 19.7 cm, and detection rate of the two targets is 88.75%, and no false alarm trajectory.
Jupiter has nearly 8000~known co-orbital asteroids orbiting in the L4 and L5 Lagrange points called Jupiter Trojan asteroids. Aside from the greater number density of the L4 cloud the two clouds are in many ways considered to be identical. Using spar se photometric data taken by the Asteroid Terrestrial-impact Last Alert System (ATLAS) for 863 L4 Trojans and 380 L5 Trojans we derive the shape distribution for each of the clouds and find that, on average, the L4 asteroids are more elongated than the L5 asteroids. This shape difference is most likely due to the greater collision rate in the L4 cloud that results from its larger population. We additionally present the phase functions and $c-o$ colours of 266~objects.
The Canada-France-Hawaii Legacy Survey (CFHTLS) comprising about 25 000 MegaCam images was data mined to search for serendipitous encounters of known Near Earth Asteroids (NEAs) and Potentially Hazardous Asteroids (PHAs). A total of 143 asteroids (10 9 NEAs and 34 PHAs) were found on 508 candidate images which were field corrected and measured carefully, and their astrometry was reported to Minor Planet Centre. Both recoveries and precoveries (apparitions before discovery) were reported, including data for 27 precovered asteroids (20 NEAs and 7 PHAs) and 116 recovered asteroids (89 NEAs and 27 PHAs). Our data prolonged arcs for 41 orbits at first or last opposition, refined 35 orbits by fitting data taken at one new opposition, recovered 6 NEAs at their second opposition and allowed us to ameliorate most orbits and their Minimal Orbital Intersection Distance (MOID), an important parameter to monitor for potential Earth impact hazard in the future.
The Trojan asteroids provide a unique perspective on the history of Solar System. As a large population of small bodies, they record important gravitational interactions and dynamical evolution of the Solar System. In the past decade, significant adv ances have been made in understanding physical properties, and there has been a revolution in thinking about the origin of Trojans. The ice and organics generally presumed to be a significant part of Trojan compositions have yet to be detected directly, though low density of the binary system Patroclus (and possibly low density of the binary/moonlet system Hektor) is consistent with an interior ice component. By contrast, fine-grained silicates that appear to be similar to cometary silicates in composition have been detected, and a color bimodality may indicate distinct compositional groups among the Trojans. Whereas Trojans had traditionally been thought to have formed near 5 AU, a new paradigm has developed in which the Trojans formed in the proto-Kuiper Belt, and they were scattered inward and captured in the Trojan swarms as a result of resonant interactions of the giant planets. Whereas the orbital and population distributions of current Trojans are consistent with this origin scenario, there are significant differences between current physical properties of Trojans and those of Kuiper Belt objects. These differences may be indicative of surface modification due to the inward migration of objects that became the Trojans, but understanding of appropriate modification mechanisms is poor and would benefit from additional laboratory studies. Many open questions remain, and the future promises significant strides in our understanding of Trojans. The time is ripe for a spacecraft mission to the Trojans, to turn these objects into geologic worlds that can be studied in detail to unravel their complex history.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا