ﻻ يوجد ملخص باللغة العربية
We study a relativistic fluid with longitudinal boost invariance in a quantum-statistical framework as an example of a solvable non-equilibrium problem. For the free quantum field, we calculate the exact form of the expectation values of the stress-energy tensor and the entropy current. For the stress-energy tensor, we find that a finite value can be obtained only by subtracting the vacuum of the density operator at some fixed proper time tau_0. As a consequence, the stress-energy tensor acquires non-trivial quantum corrections to the classical free-streaming form.
We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appro
We derive a thermodynamic first law for the electrically charged C-metric with vanishing cosmological constant. This spacetime describes a pair of identical accelerating black holes each pulled by a cosmic string. Treating the boost time of this spac
We examine the nonperturbative effect of maximum momentum on the relativistic wave equations. In momentum representation, we obtain the exact eigen-energies and wavefunctions of one-dimensional Klein-Gordon and Dirac equation with linear confining po
Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of inertial spontaneous symmetry breaking that does not involve a potential. This is dictated by the structure of the Weyl cur
We propose fundamental scale invariance as a new theoretical principle beyond renormalizability. Quantum field theories with fundamental scale invariance admit a scale-free formulation of the functional integral and effective action in terms of scale