ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative high-resolution spectroscopy of M dwarfs -- exploring non-LTE effects

90   0   0.0 ( 0 )
 نشر من قبل Terese Olander
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

M dwarfs are key targets for high-resolution spectroscopic analyses due to a high incidence of these stars in the solar neighbourhood and their importance as exoplanetary hosts. Several methodological challenges make such analyses difficult, leading to significant discrepancies in the published results. We compare M dwarf parameters derived by recent high-resolution near-infrared studies with each other and with fundamental stellar parameters. We also assess to what extent deviations from local thermodynamic equilibrium (LTE) for Fe and K influence the outcome of these studies. We carry out line formation calculations based on a modern model atmosphere grid along with a synthetic spectrum synthesis code that treats formation of atomic and molecular lines in cool-star atmospheres including departures from LTE. We use near-infrared spectra collected with the CRIRES instrument at the ESO VLT as reference observational data. We find that the effective temperatures obtained by the different studies mostly agree to better than 100 K. We see a much worse agreement in the surface gravities and metallicities. We demonstrate that non-LTE effects are negligible for Fe I in M-dwarf atmospheres but are important for K I. These effects, leading to K abundance and metallicity corrections on the order of 0.2 dex, may be responsible for some of the discrepancies in the published analyses. Differences in the temperature-pressure structures of the atmospheric models may be another factor contributing to the discrepancies, in particular at low metallicities and high effective temperatures. In high-resolution spectroscopic studies of M dwarfs attention should be given to details of the line formation physics as well as input atomic and molecular data. Collecting high-quality, wide wavelength coverage spectra of benchmark M dwarfs is an essential future step.



قيم البحث

اقرأ أيضاً

We present observations of 36 late-M dwarfs obtained with the KeckII/NIRSPEC in the J-band at a resolution of sim20,000. We have measured projected rotational velocities, absolute radial velocities, and pseudo-equivalent widths of atomic lines. 12 of our targets did not have previous measurements in the literature. For the other 24 targets, we confirm previously reported measurements. We find that 13 stars from our sample have vsini below our measurement threshold (12 km/s) whereas four of our targets are fast rotators (vsini > 30 km/s). As fast rotation causes spectral features to be washed out, stars with low projected rotational velocities are sought for radial velocity surveys. At our intermediate spectral resolution we have confirmed the identification of neutral atomic lines reported in Mclean et al. 2007. We also calculated pseudo-equivalent widths (p-EW) of 12 atomic lines. Our results confirm that the p-EW of K I lines are strongly dependent on spectral types. We observe that the p-EW of Fe I and Mn I lines remain fairly constant with later spectral type. We suggest that those lines are particularly suitable for deriving metallicities for late-M dwarfs.
Context. CARMENES is a stabilised, high-resolution, double-channel spectrograph at the 3.5 m Calar Alto telescope. It is optimally designed for radial-velocity surveys of M dwarfs with potentially habitable Earth-mass planets. Aims. We prepare a list of the brightest, single M dwarfs in each spectral subtype observable from the northern hemisphere, from which we will select the best planet-hunting targets for CARMENES. Methods. In this first paper on the preparation of our input catalogue, we compiled a large amount of public data and collected low-resolution optical spectroscopy with CAFOS at the 2.2 m Calar Alto telescope for 753 stars. We derived accurate spectral types using a dense grid of standard stars, a double least-squares minimisation technique, and 31 spectral indices previously defined by other authors. Additionally, we quantified surface gravity, metallicity, and chromospheric activity for all the stars in our sample. Results. We calculated spectral types for all 753 stars, of which 305 are new and 448 are revised. We measured pseudo-equivalent widths of Halpha for all the stars in our sample, concluded that chromospheric activity does not affect spectral typing from our indices, and tabulated 49 stars that had been reported to be young stars in open clusters, moving groups, and stellar associations. Of the 753 stars, two are new subdwarf candidates, three are T Tauri stars, 25 are giants, 44 are K dwarfs, and 679 are M dwarfs. Many of the 261 investigated dwarfs in the range M4.0-8.0 V are among the brightest stars known in their spectral subtype. Conclusions. This collection of low-resolution spectroscopic data serves as a candidate target list for the CARMENES survey and can be highly valuable for other radial-velocity surveys of M dwarfs and for studies of cool dwarfs in the solar neighbourhood.
The new CARMENES instrument comprises two high-resolution and high-stability spectrographs that are used to search for habitable planets around M dwarfs in the visible and near-infrared regime via the Doppler technique. Characterising our target samp le is important for constraining the physical properties of any planetary systems that are detected. The aim of this paper is to determine the fundamental stellar parameters of the CARMENES M-dwarf target sample from high-resolution spectra observed with CARMENES. We also include several M-dwarf spectra observed with other high-resolution spectrographs, that is CAFE, FEROS, and HRS, for completeness. We used a {chi}^2 method to derive the stellar parameters effective temperature T_eff, surface gravity log g, and metallicity [Fe/H] of the target stars by fitting the most recent version of the PHOENIX-ACES models to high-resolution spectroscopic data. These stellar atmosphere models incorporate a new equation of state to describe spectral features of low-temperature stellar atmospheres. Since T_eff, log g, and [Fe/H] show degeneracies, the surface gravity is determined independently using stellar evolutionary models. We derive the stellar parameters for a total of 300 stars. The fits achieve very good agreement between the PHOENIX models and observed spectra. We estimate that our method provides parameters with uncertainties of {sigma} T_eff = 51 K, {sigma} log g = 0.07, and {sigma} [Fe/H] = 0.16, and show that atmosphere models for low-mass stars have significantly improved in the last years. Our work also provides an independent test of the new PHOENIX-ACES models, and a comparison for other methods using low-resolution spectra. In particular, our effective temperatures agree well with literature values, while metallicities determined with our method exhibit a larger spread when compared to literature results.
198 - V. Neves 2014
Aims. In this work we develop a technique to obtain high precision determinations of both metallicity and effective temperature of M dwarfs in the optical. Methods. A new method is presented that makes use of the information of 4104 lines in the 53 0-690 nm spectral region. It consists in the measurement of pseudo equivalent widths and their correlation with established scales of [Fe/H] and $T_{eff}$. Results. Our technique achieves a $rms$ of 0.08$pm$0.01 for [Fe/H], 91$pm$13 K for $T_{eff}$, and is valid in the (-0.85, 0.26 dex), (2800, 4100 K), and (M0.0, M5.0) intervals for [Fe/H], $T_{eff}$ and spectral type respectively. We also calculated the RMSE$_{V}$ which estimates uncertainties of the order of 0.12 dex for the metallicity and of 293 K for the effective temperature. The technique has an activity limit and should only be used for stars with $log{L_{H_{alpha}}/L_{bol}} < -4.0$. Our method is available online at url{http://www.astro.up.pt/resources/mcal}.
Aims: We search for low-mass companions of M dwarfs and characterize their multiplicity fraction with the purpose of helping in the selection of the most appropriate targets for the CARMENES exoplanet survey. Methods: We obtained high-resolution imag es in the I band with the lucky imaging instrument FastCam at the 1.5 m Telescopio Carlos Sanchez for 490 mid- to late-M dwarfs. For all the detected binaries, we measured angular separations, position angles, and magnitude differences in the I band. We also calculated the masses of each individual component and estimated orbital periods, using the available magnitude and colour relations for M dwarfs and our own MJ-spectral type and mass-MI relations. To avoid biases in our sample selection, we built a volume-limited sample of M0.0-M5.0 dwarfs that is complete up to 86% within 14 pc. Results: From the 490 observed stars, we detected 80 companions in 76 systems, of which 30 are new discoveries. The multiplicity fraction in our observed sample is 16.7+-2.0% . In our volume-limited sample it is 19.5+-2.3% for angular separations of 0.2 to 5.0 arcsec (1.4-65.6 au), The distribution of the projected physical separations peaks at 2.5-7.5 au. For M0.0-M3.5 V primaries, our search is sensitive to mass ratios higher than 0.3. Binaries with projected physical separations shorter than 50 au tend to be of equal mass. For 26 of our systems, we estimated orbital periods shorter than 50 a, 10 of which are presented here for the first time. We measured variations in angular separation and position angle that are due to orbital motions in 17 of these systems. The contribution of binaries and multiples with angular separations shorter than 0.2 arcsec, longer than 5.0 arcsec, and of spectroscopic binaries identified from previous searches, although not complete, may increase the multiplicity fraction of M dwarfs in our volume-limited sample to at least 36%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا