ترغب بنشر مسار تعليمي؟ اضغط هنا

Computational study of simultaneous positive and negative streamer propagation in a twin surface dielectric barrier discharge via 2D PIC simulations

69   0   0.0 ( 0 )
 نشر من قبل Thomas Mussenbrock
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The propagation mechanisms of plasma streamers have been observed and investigated in a surface dielectric barrier discharge (SDBD) using 2D particle in cell simulations. The investigations are carried out under a simulated air mixture, 80% N$_2$ and 20% O$_2$, at atmospheric pressure, 100$,$kPa, under both DC conditions and a pulsed DC waveform that represent AC conditions. The simulated geometry is a simplification of the symmetric and fully exposed SDBD resulting in the simultaneous ignition of both positive and negative streamers on either side of the Al$_2$O$_3$ dielectric barrier. In order to determine the interactivity of the two streamers, the propagation behavior for the positive and negative streamers are investigated both independently and simultaneously under identical constant voltage conditions. An additional focus is implored under a fast sub nanosecond rise time square voltage pulse alternating between positive and negative voltage conditions, thus providing insight into the dynamics of the streamers under alternating polarity switches. It is shown that the simultaneous ignition of both streamers, as well as using the pulsed DC conditions, provides both an enhanced discharge and an increased surface coverage. It is also shown that additional streamer branching may occur in a cross section that is difficult to experimentally observe. The enhanced discharge and surface coverage may be beneficial to many applications such as, but are not limited to: air purification, volatile organic compound removal, and plasma enhanced catalysis.

قيم البحث

اقرأ أيضاً

In this work, we propose and compare four different strategies to simulate the fluid model for streamer propagation in one-dimension (1D) and quasi two-dimension (2D), which consists of a Poissons equation for particle velocity and two continuity equ ations for particle transport. Each strategy involves of one method for solving Poissons equation and the other for solving continuity equations, and a total variation diminishing three-stage Runge-Kutta method in temporal discretization. The numerical methods for Poissons equation include finite volume method, discontinuous Galerkin methods, mixed finite element method and least-squared finite element method. The numerical method for continuity equations is chosen from the family of discontinuous Galerkin methods. The accuracy tests and comparisons show that all of these four strategies are suitable and competitive in streamer simulations from the aspects of accuracy and efficiency. Results show these methods are compatible. By applying any strategy in real simulations, we can study the dynamics of streamer propagations in both 1D and quasi 2D models.
We report on the first observation of white-eye pattern in an air dielectric barrier discharge. The patterned discharges undergo a development as following: random spots - quasihexagonal pattern - hexagonal pattern (type I) - hexagonal pattern (type II) - white-eye pattern - chaos as the voltage is increased. The spatiotemporal characteristics of patterned discharges are investigated by using an optical method. Results show that the two discharge modes, uniform mode and filamentary mode, are actually two different spatial presentations of the same origin: the microdischarge. From the viewpoint of pattern dynamics, the white-eye pattern results from a 3-wave resonance interaction.
There currently exists a number of different schemes for laser based ion acceleration in the literature. Some of these schemes are also partly overlapping, making a clear distinction between the schemes difficult in certain parameter regimes. Here, w e provide a systematic numerical comparison between the following schemes and their analytical models: light-sail acceleration, Coulomb explosions, hole boring acceleration, and target normal sheath acceleration (TNSA). We study realistic laser parameters and various different target designs, each optimized for one of the acceleration schemes, respectively. As a means of comparing the schemes, we compute the ion current density generated at different laser powers, using two-dimensional particle-in-cell (PIC) simulations, and benchmark the particular analytical models for the corresponding schemes against the numerical results. Finally, we discuss the consequences for attaining high fluxes through the studied laser ion-acceleration schemes.
Previous studies of streamer discharge branching mechanisms have mainly been generative other than predictive. To predict or even control branching, a reliable connection between experimental conditions and streamer branching needs to be established. As an important step toward the goal, in this work, a 2D deterministic model of negative streamers in air is numerically solved with the ionization seeds assumed as the superposition of Gaussians. The indicative profiles approach developed here can consistently relate the change in a quantitative measure of geometrical irregularity of the seed profiles with specific electron densities to the emergence of front splitting of streamer discharges under various voltages, seed characteristic sizes, and preionization levels. The results of this study could inform experiments to identify and clarify streamer branching mechanisms.
We study the development of a negative discharge driven by a Marx generator of about 1 MV in an air gap of 1 up to 1.5 meter, at standard temperature and pressure. We show the evolution of the discharge with nanosecond-fast photography together with the electrical characteristics. The negative discharge develops through four well-distinguished streamer bursts. The streamers have different velocities and life times in different bursts. The last burst triggers a positive inception cloud on the positive grounded electrode and a burst of positive counter-streamers emerges. The pre-discharge then bridges the gap and leaders grow from both electrodes. Finally a spark is formed. Looking closer into the pre-ionized zone near the cathode, we find isolated dots which are potential branching points. These dots act as starting points for positive streamers that move towards the high-voltage electrode. We also find such phenomena as space leaders and leader stepping in our laboratory sparks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا