ﻻ يوجد ملخص باللغة العربية
We construct a new factorized waveform including $(l,|m|)=(2,2),(2,1),(3,3),(4,4)$ modes based on effective-one-body (EOB) formalism, which is valid for spinning binary black holes (BBH) in general equatorial orbit. When combined with the dynamics of $texttt{SEOBNRv4}$, the $(l,|m|)=(2,2)$ mode waveform generated by this new waveform can fit the original $texttt{SEOBNRv4}$ waveform very well in the case of a quasi-circular orbit. We have calibrated our new waveform model to the Simulating eXtreme Spacetimes (SXS) catalog. The comparison is done for BBH with total mass in $(20,200)M_odot$ using Advanced LIGO designed sensitivity. For the quasi-circular cases we have compared our $(2,2)$ mode waveforms to the 281 numerical relativity (NR) simulations of BBH along quasi-circular orbits. All of the matching factors are bigger than 98%. For the elliptical cases, 24 numerical relativity simulations of BBH along an elliptic orbit are used. For each elliptical BBH system, we compare our modeled gravitational polarizations against the NR results for different combinations of the inclination angle, the initial orbit phase and the source localization in the sky. We use the the minimal matching factor respect to the inclination angle, the initial orbit phase and the source localization to quantify the performance of the higher modes waveform. We found that after introducing the high modes, the minimum of the minimal matching factor among the 24 tested elliptical BBHs increases from 90% to 98%. Following our previous $texttt{SEOBNRE}$ waveform model, we call our new waveform model $texttt{SEOBNREHM}$. Our $texttt{SEOBNREHM}$ waveform model can match all tested 305 SXS waveforms better than 98% including highly spinning ($chi=0.99$) BBH, highly eccentric ($eapprox0.15$) BBH and large mass ratio ($q=10$) BBH.
Gravitational wave astrophysics relies heavily on the use of matched filtering both to detect signals in noisy data from detectors, and to perform parameter estimation on those signals. Matched filtering relies upon prior knowledge of the signals exp
A generic, non-eccentric binary black hole (BBH) system emits gravitational waves (GWs) that are completely described by 7 intrinsic parameters: the black hole spin vectors and the ratio of their masses. Simulating a BBH coalescence by solving Einste
We develop the foundations of an effective-one-body (EOB) model for eccentric binary coalescences that includes the conservative dynamics, radiation reaction, and gravitational waveform modes from the inspiral and the merger-ringdown signals. We use
As gravitational-wave detectors become more sensitive, we will access a greater variety of signals emitted by compact binary systems, shedding light on their astrophysical origin and environment. A key physical effect that can distinguish among forma
We compute the periastron advance using the effective-one-body formalism for binary black holes moving on quasi-circular orbits and having spins collinear with the orbital angular momentum. We compare the predictions with the periastron advance recen