ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling the Hybridization Process in a Quantum Critical Ferromagnet by Ultrafast Optical Spectroscopy

129   0   0.0 ( 0 )
 نشر من قبل Jingbo Qi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the ultrafast optical pump-probe spectroscopy measurements on the recently discovered quantum critical ferromagnet CeRh$_6$Ge$_4$. Our experimental results reveal the two-stage development of the hybridization between localized $f$ moments and conduction electrons with lowering temperature, as evidenced by (1) the presence of hybridization fluctuation for temperatures from $sim$85 K ($T^*$) to $sim$140 K ($T^dagger$), and (2) the emergence of collective hybridization below the coherence temperature, $T^*$, marked by the opening of an indirect gap of 2$Delta$ $approx$12 meV. We also observe three coherent phonon modes being softened anomalously below $T^*$, reflecting directly their coupling with the emergent coherent heavy electrons. Our findings establish the universal nature of the hybridization process in different heavy fermion systems.

قيم البحث

اقرأ أيضاً

We investigate the quasiparticle dynamics in the prototype heavy fermion CeCoIn$_5$ using ultrafast optical pump-probe spectroscopy. Our results indicate that this material system undergoes hybridization fluctuations before full establishment of the heavy electron coherence, as the temperature decreases from $sim$120 K ($T^dagger$) to $sim$55 K ($T^*$ ). We reveal that the observed anomalous phonon softening and damping reduction below $T^*$ are directly associated with opening of an indirect hybridization gap. We also discover a distinct collective mode with an energy of $sim$8 meV, which may be the experimental evidence of the predicted unconventional density wave. Our observations provide critical informations for understanding the hybridization dynamics in heavy fermion materials.
In heavy fermions the relaxation dynamics of photoexcited carriers has been found to be governed by the low energy indirect gap, E$_{g}$, resulting from hybridization between localized moments and conduction band electrons. Here, carrier relaxation d ynamics in a prototype Kondo insulator YbB${}_{12}$ is studied over large range of temperatures and over three orders of magnitude. We utilize the intrinsic non-linearity of dynamics to quantitatively determine microscopic parameters, such as electron-hole recombination rate. The extracted value reveals that hybridization is accompanied by a strong charge transfer from localized 4f-levels. The results imply the presence of a hybridization gap up to temperatures of the order of E$_{g}$/k$_{B}approx200$ K, which is extremely robust against electronic excitation. Finally, below 20 K the data reveal changes in the low energy electronic structure, attributed to short-range antiferromagnetic correlations between the localized levels.
Recently, the switching between the different charge-ordered phases of 1T-TaS2 has been probed by ultrafast techniques, revealing unexpected phenomena such as hidden metastable states and peculiar photoexcited charge patterns. Here, we apply broadban d pump-probe spectroscopy with varying excitation energy to study the ultrafast optical properties of 1T-TaS2 in the visible regime. By scanning the excitation energy in the near-IR region we unravel the coupling between different charge excitations and the low-lying charge-density wave state. We find that the amplitude mode of the charge-density wave exhibits strong coupling to a long-lived doublon state that is photoinduced in the center of the star-shaped charge-ordered Ta clusters by the near-IR optical excitation.
We investigate the thermal-driven charge density wave (CDW) transition of two cubic superconducting intermetallic systems Lu(Pt1-xPdx)2In and (Sr1-xCax)3Ir4Sn13 by means of x-ray diffraction technique. A detailed analysis of the CDW modulation superl attice peaks as function of temperature is performed for both systems as the CDW transition temperature T_CDW is suppressed to zero by an non-thermal control parameter. Our results indicate an interesting crossover of the classical thermal-driven CDW order parameter critical exponent from a three-dimensional universality class to a mean-field tendency, as T_CDW vanishes. Such behavior might be associated with presence of quantum fluctuations which influences the classical second-order phase transition, strongly suggesting the presence of a quantum critical point (QCP) at T_CDW = 0. This also provides experimental evidence that the effective dimensionality exceeds its upper critical dimension due to a quantum phase transition.
Photoinduced non-thermal phase transitions are new paradigms of exotic non-equilibrium physics of strongly correlated materials. An ultrashort optical pulse can drive the system to a new order through complex microscopic interactions that do not occu r in the equilibrium state. Ultrafast spectroscopies are unique tools to reveal the underlying mechanisms of such transitions which lead to transient phases of matter. Yet, their individual specificities often do not provide an exhaustive picture of the physical problem. One effective solution to enhance their performance is the integration of different ultrafast techniques. This provides an opportunity to simultaneously probe physical phenomena from different perspectives whilst maintaining the same experimental conditions. In this context, we performed complementary experiments by combining time-resolved reflectivity and time and angle-resolved photoemission spectroscopy. We demonstrated the advantage of this combined approach by investigating the complex charge density wave (CDW) phase in 1$it{T}$-TiSe$_{2}$. Specifically, we show the key role of lattice degrees of freedom to establish and stabilize the CDW in this material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا