ترغب بنشر مسار تعليمي؟ اضغط هنا

DepOwl: Detecting Dependency Bugs to Prevent Compatibility Failures

97   0   0.0 ( 0 )
 نشر من قبل Zhouyang Jia
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Applications depend on libraries to avoid reinventing the wheel. Libraries may have incompatible changes during evolving. As a result, applications will suffer from compatibility failures. There has been much research on addressing detecting incompatible changes in libraries, or helping applications co-evolve with the libraries. The existing solution helps the latest application version work well against the latest library version as an afterthought. However, end users have already been suffering from the failures and have to wait for ne

قيم البحث

اقرأ أيضاً

XML configuration files are widely used in Android to define an apps user interface and essential runtime information such as system permissions. As Android evolves, it might introduce functional changes in the configuration environment, thus causing compatibility issues that manifest as inconsistent app behaviors at different API levels. Such issues can often induce software crashes and inconsistent look-and-feel when running at specific Androi
Since the emergence of Ethereum, blockchain-based decentralized applications (DApps) have become increasingly popular and important. To balance the security, performance, and costs, a DApp typically consists of two layers: an on-chain layer to execut e transactions and store crucial data on the blockchain and an off-chain layer to interact with users. A DApp needs to synchronize its off-chain layer with the on-chain layer proactively. Otherwise, the inconsistent data in the off-chain layer could mislead users and cause undesirable consequences, e.g., loss of transaction fees. However, transactions sent to the blockchain are not guaranteed to be executed and could even be reversed after execution due to chain reorganization. Such non-determinism in the transaction execution is unique to blockchain. DApp developers may fail to perform the on-chain-off-chain synchronization accurately due to their lack of familiarity with the complex transaction lifecycle. In this work, we investigate the challenges of synchronizing on-chain and off-chain data in Ethereum-based DApps. We present two types of bugs that could result in inconsistencies between the on-chain and off-chain layers. To help detect such on-chain-off-chain synchronization bugs, we introduce a state transition model to guide the testing of DApps and propose two effective oracles to facilitate the automatic identification of bugs. We build the first testing framework, DArcher, to detect on-chain-off-chain synchronization bugs in DApps. We have evaluated DArcher on 11 popular real-world DApps. DArcher achieves high precision (99.3%), recall (87.6%), and accuracy (89.4%) in bug detection and significantly outperforms the baseline methods. It has found 15 real bugs in the 11 DApps. So far, six of the 15 bugs have been confirmed by the developers, and three have been fixed. These promising results demonstrate the usefulness of DArcher.
Static bug finders have been widely-adopted by developers to find bugs in real world software projects. They leverage predefined heuristic static analysis rules to scan source code or binary code of a software project, and report violations to these rules as warnings to be verified. However, the advantages of static bug finders are overshadowed by such issues as uncovered obvious bugs, false positives, etc. To improve these tools, many techniques have been proposed to filter out false positives reported or design new static analysis rules. Nevertheless, the under-performance of bug finders can also be caused by the incorrectness of current rules contained in the static bug finders, which is not explored yet. In this work, we propose a differential testing approach to detect bugs in the rules of four widely-used static bug finders, i.e., SonarQube, PMD, SpotBugs, and ErrorProne, and conduct a qualitative study about the bugs found. To retrieve paired rules across static bug finders for differential testing, we design a heuristic-based rule mapping method which combines the similarity in rules description and the overlap in warning information reported by the tools. The experiment on 2,728 open source projects reveals 46 bugs in the static bug finders, among which 24 are fixed or confirmed and the left are awaiting confirmation. We also summarize 13 bug patterns in the static analysis rules based on their context and root causes, which can serve as the checklist for designing and implementing other rules and or in other tools. This study indicates that the commonly-used static bug finders are not as reliable as they might have been envisaged. It not only demonstrates the effectiveness of our approach, but also highlights the need to continue improving the reliability of the static bug finders.
Background: Performance bugs can lead to severe issues regarding computation efficiency, power consumption, and user experience. Locating these bugs is a difficult task because developers have to judge for every costly operation whether runtime is co nsumed necessarily or unnecessarily. Objective: We wanted to investigate how developers, when locating performance bugs, navigate through the code, understand the program, and communicate the detected issues. Method: We performed a qualitative user study observing twelve developers trying to fix documented performance bugs in two open source projects. The developers worked with a profiling and analysis tool that visually depicts runtime information in a list representation and embedded into the source code view. Results: We identified typical navigation strategies developers used for pinpointing the bug, for instance, following method calls based on runtime consumption. The integration of visualization and code helped developers to understand the bug. Sketches visualizing data structures and algorithms turned out to be valuable for externalizing and communicating the comprehension process for complex bugs. Conclusion: Fixing a performance bug is a code comprehension and navigation problem. Flexible navigation features based on executed methods and a close integration of source code and performance information support the process.
87 - Yepang Liu , Lili Wei , Chang Xu 2016
Resource leak bugs in Android apps are pervasive and can cause serious performance degradation and system crashes. In recent years, several resource leak detection techniques have been proposed to assist Android developers in correctly managing syste m resources. Yet, there exist no common bug benchmarks for effectively and reliably comparing such techniques and quantitatively evaluating their strengths and weaknesses. This paper describes our initial contribution towards constructing such a benchmark. To locate real resource leak bugs, we mined 124,215 code revisions of 34 large-scale open-source Android apps. We successfully found 298 fixed resource leaks, which cover a diverse set of resource classes, from 32 out of the 34 apps. To understand the characteristics of these bugs, we conducted an empirical study, which revealed the root causes of frequent resource leaks in Android apps and common patterns of faults made by developers. With our findings, we further implemented a static checker to detect a common pattern of resource leaks in Android apps. Experiments showed that the checker can effectively locate real resource leaks in popular Android apps, confirming the usefulness of our work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا