ترغب بنشر مسار تعليمي؟ اضغط هنا

Modification of the quasi-lattice theory for liquid alloys on the basis of varying the coordination number and its application to Al-Sn, Al-Zn and Sn-Zn

351   0   0.0 ( 0 )
 نشر من قبل Olugbenga Oshakuade
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The existing quasi-lattice theory for liquid alloys (QLT), which has been extensively used by many researchers, has been modified by incorporating the knowledge of composition and temperature-dependent coordination numbers. The modified QLT was then used to compute the enthalpy of mixing, the entropy of mixing, concentration fluctuations, Warren-Cowley short range order parameter, surface concentrations and surface tensions of liquid Al-Sn, Al-Zn and Sn-Zn systems, which are the binary sub-systems for Al-Sn-Zn. The effect of the approximation of coordination number in the existing QLT was also investigated and was found to be insignificant when coordination number is 10. This work has provided a more physically realistic quasi-lattice theory, and has contributed to the knowledge on the binary subsystems of Al-Sn-Zn and has also set a foundation for the application of quasi-lattice theory on Al-Sn-Zn and other ternary systems.

قيم البحث

اقرأ أيضاً

The Mg-Zn and Al-Zn binary alloys have been investigated theoretically under static isotropic pressure. The stable phases of these binaries on both initially hexagonal-close-packed (HCP) and face-centered-cubic (FCC) lattices have been determined by utilizing an iterative approach that uses a configurational cluster expansion method, Monte Carlo search algorithm, and density functional theory (DFT) calculations. Based on 64-atom models, it is shown that the most stable phases of the Mg-Zn binary alloy under ambient condition are $rm MgZn_3$, $rm Mg_{19}Zn_{45}$, $rm MgZn$, and $rm Mg_{34}Zn_{30}$ for the HCP, and $rm MgZn_3$ and $rm MgZn$ for the FCC lattice, whereas the Al-Zn binary is energetically unfavorable throughout the entire composition range for both the HCP and FCC lattices under all conditions. By applying an isotropic pressure in the HCP lattice, $rm Mg_{19}Zn_{45}$ turns into an unstable phase at P$approx$$10$~GPa, a new stable phase $rm Mg_{3}Zn$ appears at P$gtrsim$$20$~GPa, and $rm Mg_{34}Zn_{30}$ becomes unstable for P$gtrsim$$30$~GPa. For FCC lattice, the $rm Mg_{3}Zn$ phase weakly touches the convex hull at P$gtrsim$$20$~GPa while the other stable phases remain intact up to $approx$$120$~GPa. Furthermore, making use of the obtained DFT results, bulk modulus has been computed for several compositions up to pressure values of the order of $approx$$120$~GPa. The findings suggest that one can switch between $rm Mg$-rich and $rm Zn$-rich early-stage clusters simply by applying external pressure. $rm Zn$-rich alloys and precipitates are more favorable in terms of stiffness and stability against external deformation.
The thermodynamic properties of Bi-Sn were studied at 600 and 900K using a quasi-lattice theory. After successful fitting of Gibbs free energies of mixing and thermodynamic activities, the fitting parameters were used to investigate the enthalpy of m ixing, the entropy of mixing, concentration fluctuations, Warren-Cowley short range order parameter, surface concentrations and surface tensions of the binary systems. Positive and symmetrically shaped enthalpies of mixing were observed in all composition range, while negative excess entropies of mixing were observed. Bi-Sn showed a slight preference for like-atoms as nearest neighbours in all composition range. The nature of atomic order in Bi-Sn at 600 and 900K appeared similar. The highest tendency for homocoordination exists at composition where mole fraction of Bi is about 40%. It was also observed that Bi (whose surface tension is lower than that of Sn) has the highest surface enrichment in the Bi-Sn systems. Unlike many previous applications of the quasi-lattice theory where constant values were used to approximate coordination numbers, temperature and composition-dependent coordination numbers were applied in this work.
We study the site occupancy and magnetic properties of Zn-Sn substituted M-type Sr-hexaferrite SrFe$_{12-x}$(Zn$_{0.5}$Sn$_{0.5}$)$_x$O$_{19}$ with x = 1 using first-principles total-energy calculations. We find that in a ground-state configuration Z n-Sn ions preferentially occupy $4f_1$ and $4f_2$ sites unlike the model previously suggested by Ghasemi et al. [J. Appl. Phys, textbf{107}, 09A734 (2010)], where Zn$^{2+}$ and Sn$^{4+}$ ions occupy the $2b$ and $4f_2$ sites. Density-functional theory calculations show that our model has a lower total energy by more than 0.2 eV per unit cell compared to Ghasemis model. More importantly, the latter does not show an increase in saturation magnetization ($M_s$) compared to the pure $M$-type Sr-hexaferrite, in disagreement with the experiment. On the other hand, our model correctly predicts a rapid increase in $M_s$ as well as a decrease in magnetic anisotropy compared to the pure $M$-type Sr-hexaferrite, consistent with experimental measurements.
An in-depth analysis of Zn/Al doped nickel ferrites grown by reactive magnetron sputtering is relevant due to their promising characteristics for applications in spintronics. The material is insulating and ferromagnetic at room temperature with an ad ditional low magnetic damping. By studying the complex interplay between strain and cation distribution their impact on the magnetic properties, i.e. anisotropy, damping and g-factor is unravelled. In particular, a strong influence of the lattice site occupation of Ni$^{2+}_{text{Td}}$ and cation coordination of Fe$^{2+}_{text{Oh}}$ on the intrinsic damping is found. Furthermore, the critical role of the incorporation of Zn$^{2+}$ and Al$^{3+}$ is evidenced by comparison with a sample of altered composition. Especially, the dopant Zn$^{2+}$ is evidenced as a tuning factor for Ni$^{2+}_{text{Td}}$ and therefore unquenched orbital moments directly controlling the g-factor. A strain-independent reduction of the magnetic anisotropy and damping by adapting the cation distribution is demonstrated.
The site preference and magnetic properties of Zn, Sn and Zn-Sn substituted M-type strontium hexaferrite (SrFe$_{12}$O$_{19}$) have been investigated using first-principles total energy calculations based on density functional theory. The site occupa ncy of substituted atoms were estimated by calculating the substitution energies of different configurations. The distribution of different configurations during the annealing process at high temperature was determined using the formation probabilities of configurations to calculate magnetic properties of substituted strontium hexaferrite. We found that the magnetization and magnetocrystalline anisotropy are closely related to the distributions of Zn-Sn ions on the five Fe sites. Our calculation show that in SrFe$_{11.5}$Zn$_{0.5}$O$_{19}$, Zn atoms prefer to occupy $4f_1$, $12k$, and $2a$ sites with occupation probability of 78%, 19% and 3%, respectively, while in SrFe$_{11.5}$SnO$_{19}$, Sn atoms occupy the $12k$ and $4f_2$ sites with occupation probability of 54% and 46%, respectively. We also found that in SrFe$_{11}$Zn$_{0.5}$Sn$_{0.5}$O$_{19}$, (Zn,Sn) atom pairs prefer to occupy the ($4f_1$, $4f_2$), ($4f_1$, $12k$) and ($12k$, $12k$) sites with occupation probability of 82%, 8% and 6%, respectively. Our calculation shows that the increase of magnetization and the reduction of magnetic anisotropy in Zn-Sn substituted M-type strontium hexaferrite as observed experimentally is due to the occupation of (Zn,Sn) pairs at the ($4f_1$, $4f_2$) sites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا