ﻻ يوجد ملخص باللغة العربية
A ballot permutation is a permutation {pi} such that in any prefix of {pi} the descent number is not more than the ascent number. In this article, we obtained a formula in close form for the multivariate generating function of {A(n,d,j)}, which denote the number of permutations of length n with d descents and j as the first letter. Besides, by a series of calculations with generatingfunctionology, we confirm a recent conjecture of Wang and Zhang for ballot permutations.
In this work we propose a combinatorial model that generalizes the standard definition of permutation. Our model generalizes the degenerate Eulerian polynomials and numbers of Carlitz from 1979 and provides missing combinatorial proofs for some relations on the degenerate Eulerian numbers.
A ballot permutation is a permutation $pi$ such that in any prefix of $pi$ the descent number is not more than the ascent number. By using a reversal concatenation map, we give a formula for the joint distribution (pk, des) of the peak and descent st
The Springer numbers are defined in connection with the irreducible root systems of type $B_n$, which also arise as the generalized Euler and class numbers introduced by Shanks. Combinatorial interpretations of the Springer numbers have been found by
A permutation whose any prefix has no more descents than ascents is called a ballot permutation. In this paper, we present a decomposition of ballot permutations that enables us to construct a bijection between ballot permutations and odd order permu
Recently, Nunge studied Eulerian polynomials on segmented permutations, namely emph{generalized Eulerian polynomials}, and further asked whether their coefficients form unimodal sequences. In this paper, we prove the stability of the generalized Eule