ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Capture of Interstellar Objects by our Solar System

72   0   0.0 ( 0 )
 نشر من قبل Kevin Napier
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by recent visits from interstellar comets, along with continuing discoveries of minor bodies in orbit of the Sun, this paper studies the capture of objects on initially hyperbolic orbits by our solar system. Using an ensemble of $sim500$ million numerical experiments, this work generalizes previous treatments by calculating the capture cross section as a function of asymptotic speed. The resulting velocity-dependent cross section can then be convolved with any distribution of relative speeds to determine the capture rate for incoming bodies. This convolution is carried out for the usual Maxwellian distribution, as well as the velocity distribution expected for rocky debris ejected from planetary systems. We also construct an analytic description of the capture process that provides an explanation for the functional form of the capture cross section in both the high velocity and low velocity limits.



قيم البحث

اقرأ أيضاً

79 - Tom Hands , Walter Dehnen 2019
We simulate the passage through the Sun-Jupiter system of interstellar objects (ISOs) similar to 1I/`Oumuamua or 2I/Borisov. Capture of such objects is rare and overwhelmingly from low incoming speeds onto orbits akin to those of known long-period co mets. This suggests that some of these comets could be of extra-solar origin, in particular inactive ones. Assuming ISOs follow the local stellar velocity distribution, we infer a volume capture rate of $0.051,mathrm{au}^3 mathrm{yr}^{-1}$. Current estimates for orbital lifetimes and space densities then imply steady-state captured populations of $sim10^2$ comets and $sim10^5$ `Oumuamua-like rocks, of which 0.033% are within 6au at any time.
Future remote sensing of exoplanets will be enhanced by a thorough investigation of our solar system Ice Giants (Neptune-size planets). What can the configuration of the magnetic field tell us (remotely) about the interior, and what implications does that field have for the structure of the magnetosphere; energy input into the atmosphere, and surface geophysics (for example surface weathering of satellites that might harbour sub-surface oceans). How can monitoring of auroral emission help inform future remote observations of emission from exoplanets? Our Solar System provides the only laboratory in which we can perform in-situ experiments to understand exoplanet formation, dynamos, systems and magnetospheres.
During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies. At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-rays have been detected from Saturns disk, but no convincing evidence of an X-ray aurora has been observed. The first soft (0.1- 2 keV) X-ray observation of Earths aurora by Chandra shows that it is highly variable. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, those from the disk of Mars, Venus, and Moon, and from the rings of Saturn, are mainly produced by scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, the heliosphere, the geocorona, and the Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. X-rays from the Galilean satellites and the IPT are mostly driven by impact of Jovian magnetospheric particles. This paper reviews studies of the soft X-ray emission from the solar system bodies, excluding the Sun.
59 - Henry H. Hsieh 2016
In this review presented at the Royal Society meeting, Cometary Science After Rosetta, I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). S ometimes referred to as transition objects, these bodies are perhaps more appropriately described as continuum objects, to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical, and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g., relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.
The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Gaia Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center. Positions are provided for each Gaia observation at CCD level. As additional information, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations. We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality. To exploit the epoch astrometry of asteroids in Gaia DR2 it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The distribution of residuals allowed us to identify possible contaminants in the data set. Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP). The overall astrometric performance is close to the expectations, with an optimal range of brightness G~12-17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G~12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by preliminary tests on the detection of subtle non-gravitational effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا