ترغب بنشر مسار تعليمي؟ اضغط هنا

Metastable Helium Reveals an Extended Atmosphere for the Gas Giant HAT-P-18b

73   0   0.0 ( 0 )
 نشر من قبل Kimberly Paragas
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The metastable helium line at 1083 nm can be used to probe the extended upper atmospheres of close-in exoplanets and thus provide insight into their atmospheric mass loss, which is likely to be significant in sculpting their population. We used an ultranarrowband filter centered on this line to observe two transits of the low-density gas giant HAT-P-18b, using the 200 Hale Telescope at Palomar Observatory, and report the detection of its extended upper atmosphere. We constrain the excess absorption to be $0.46pm0.12%$ in our 0.635 nm bandpass, exceeding the transit depth from the Transiting Exoplanet Survey Satellite (TESS) by $3.9sigma$. If we fit this signal with a 1D Parker wind model, we find that it corresponds to an atmospheric mass loss rate between $8.3^{+2.8}_{-1.9} times 10^{-5}$ $M_mathrm{J}$/Gyr and $2.63^{+0.46}_{-0.64} times 10^{-3}$ $M_mathrm{J}$/Gyr for thermosphere temperatures ranging from 4000 K to 13000 K, respectively. With a J magnitude of 10.8, this is the faintest system for which such a measurement has been made to date, demonstrating the effectiveness of this approach for surveying mass loss on a diverse sample of close-in gas giant planets.

قيم البحث

اقرأ أيضاً

We present a thermal emission spectrum of the bloated hot Jupiter HAT-P-32Ab from a single eclipse observation made in spatial scan mode with the Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope (HST). The spectrum covers the wavelength r egime from 1.123 to 1.644 microns which is binned into 14 eclipse depths measured to an averaged precision of 104 parts-per million. The spectrum is unaffected by a dilution from the close M-dwarf companion HAT-P-32B, which was fully resolved. We complemented our spectrum with literature results and performed a comparative forward and retrieval analysis with the 1D radiative-convective ATMO model. Assuming solar abundance of the planet atmosphere, we find that the measured spectrum can best be explained by the spectrum of a blackbody isothermal atmosphere with Tp = 1995 +/- 17K, but can equally-well be described by a spectrum with modest thermal inversion. The retrieved spectrum suggests emission from VO at the WFC3 wavelengths and no evidence of the 1.4 micron water feature. The emission models with temperature profiles decreasing with height are rejected at a high confidence. An isothermal or inverted spectrum can imply a clear atmosphere with an absorber, a dusty cloud deck or a combination of both. We find that the planet can have continuum of values for the albedo and recirculation, ranging from high albedo and poor recirculation to low albedo and efficient recirculation. Optical spectroscopy of the planets day-side or thermal emission phase curves can potentially resolve the current albedo with recirculation degeneracy.
We have performed ground-based transmission spectroscopy of the hot Jupiter HAT-P-18b using the ACAM instrument on the William Herschel Telescope (WHT). Differential spectroscopy over an entire night was carried out at a resolution of $R approx 400$ using a nearby comparison star. We detect a bluewards slope extending across our optical transmission spectrum which runs from 4750 to 9250AA. The slope is consistent with Rayleigh scattering at the equilibrium temperature of the planet (852K). We do not detect enhanced sodium absorption, which indicates that a high-altitude haze is masking the feature and giving rise to the Rayleigh slope. This is only the second discovery of a Rayleigh scattering slope in a hot Jupiter atmosphere from the ground, and our study illustrates how ground-based observations can provide transmission spectra with precision comparable to the Hubble Space Telescope.
As an exoplanet orbits its host star it reflects and emits light, forming a distinctive phase curve. By observing this light, we can study the atmosphere and surface of distant planets. The planets in our Solar System show a wide range of atmospheric phenomena, with stable wind patterns, changing storms, and evolving anomalies. Brown dwarfs also exhibit atmospheric variability. Such temporal variability in the atmosphere of a giant exoplanet has not to date been observed. HAT-P-7 b is an exoplanet with a known offset in the peak of its phase curve. Here we present variations in the peak offset ranging between -0.086+0.033-0.033 to 0.143+0.040-0.037 in phase, implying that the peak brightness repeatedly shifts from one side of the planets substellar point to the other. The variability occurs on a timescale of tens to hundreds of days. These shifts in brightness are indicative of variability in the planets atmosphere, and result from a changing balance of thermal emission and reflected flux from the planets dayside. We suggest that variation in wind speed in the planetary atmosphere, leading to variable cloud coverage on the dayside and a changing energy balance, is capable of explaining the observed variation.
153 - Ch. Helling , D. Lewis , D. Samra 2021
Ultra-hot Jupiters are the hottest exoplanets discovered so far. Observations begin to provide insight into the composition of their extended atmospheres and their chemical day/night asymmetries. Both are strongly affected by cloud formation. We expl ore trends in cloud properties for a sample of five giant gas planets: WASP-43b, WASP-18b, HAT-P-7b, WASP-103b, and WASP-121b. This provides a reference frame for cloud properties for the JWST targets WASP-43b and WASP-121b. We further explore chemically inert tracers to observe geometrical asymmetries, and if the location of inner boundary of a 3D GCM matters for the clouds that form. The large day/night temperature differences of ultra-hot Jupiters cause large chemical asymmetries: cloud-free days but cloudy nights, atomic vs. molecular gases and respectively different mean molecular weights, deep thermal ionospheres vs. low-ionised atmospheres, undepleted vs enhanced C/O. WASP-18b, as the heaviest planet in the sample, has the lowest global C/O. The global climate may be considered as similar amongst ultra-hot Jupiters, but different to that of hot gas giants. The local weather, however, is individual for each planet since the local thermodynamic conditions, and hence the local cloud and gas properties, differ. The morning and the evening terminator of ultra-hot Jupiters will carry signatures of their strong chemical asymmetry such that ingress/egress asymmetries can be expected. An increased C/O ratio is a clear sign of cloud formation, making cloud modelling a necessity when utilizing C/O (or other mineral ratios) as tracer for planet formation. The changing geometrical extension of the atmosphere from the day to the nightside may be probed through chemically inert species like helium. Ultra-hot Jupiters are likely to develop deep atmospheric ionospheres which may impact the atmosphere dynamics through MHD processes.
Probing the evaporation of exoplanet atmospheres is key to understanding the formation and evolution of exoplanetary systems. The main tracer of evaporation in the UV is the Lyman-alpha transition, which can reveal extended exospheres. Recently, NIR metastable helium triplet (1.08 microns) revealed extended thermospheres in several exoplanets, opening a new window into evaporation. We aim at spectrally resolving the first helium absorption signature detected in WASP-107b with HST/WFC3. We obtained one transit of WASP-107b with the high-resolution spectrograph CARMENES. We detect an excess helium absorption signature of 5.54+/-0.27 % in the planet rest frame during the transit. The detection is in agreement with the previous detection done with WFC3. The signature shows an excess absorption in the blue part of the lines suggesting that HeI atoms are escaping from the atmosphere of WASP-107b. We interpret the time-series absorption spectra using the 3D EVE code. Our observations can be explained by combining an extended thermosphere filling half the Roche lobe and a large exospheric tail sustained by an escape rate of metastable helium on the order of 10^6 g/s. In this scenario, however, the upper atmosphere needs to be subjected to a reduced photoionisation and radiation pressure from the star for the model to match the observations. The helium feature is detected from space and the ground. The ground-based high-resolution signal brings detailed information about the spatial and dynamical structure of the upper atmosphere, and simulations suggest that the HeI signature of WASP-107b probes both its thermosphere and exosphere establishing this signature as a robust probe of exoplanetary upper atmospheres. Surveys with NIR high-resolution spectrographs (e.g. CARMENES, SPIRou or NIRPS) will deliver a statistical understanding of exoplanet thermospheres and exospheres via the helium triplet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا