ترغب بنشر مسار تعليمي؟ اضغط هنا

A lower bound for $chi (mathcal O_S)$

61   0   0.0 ( 0 )
 نشر من قبل Vincenzo Di Gennaro
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $(S,mathcal L)$ be a smooth, irreducible, projective, complex surface, polarized by a very ample line bundle $mathcal L$ of degree $d > 25$. In this paper we prove that $chi (mathcal O_S)geq -frac{1}{8}d(d-6)$. The bound is sharp, and $chi (mathcal O_S)=-frac{1}{8}d(d-6)$ if and only if $d$ is even, the linear system $|H^0(S,mathcal L)|$ embeds $S$ in a smooth rational normal scroll $Tsubset mathbb P^5$ of dimension $3$, and here, as a divisor, $S$ is linearly equivalent to $frac{d}{2}Q$, where $Q$ is a quadric on $T$. Moreover, this is equivalent to the fact that the general hyperplane section $Hin |H^0(S,mathcal L)|$ of $S$ is the projection of a curve $C$ contained in the Veronese surface $Vsubseteq mathbb P^5$, from a point $xin Vbackslash C$.



قيم البحث

اقرأ أيضاً

161 - Christian Gleissner 2013
A complex surface $S$ is said to be isogenous to a product if $S$ is a quotient $S=(C_1 times C_2)/G$ where the $C_i$s are curves of genus at least two, and $G$ is a finite group acting freely on $C_1 times C_2$. In this paper we classify all regular surfaces isogenous to a product with $chi(mathcal O_S) = 2$ under the assumption that the action of $G$ is unmixed i.e. no element of $G$ exchange the factors of the product $C_1 times C_2$.
Let $(S,mathcal L)$ be a smooth, irreducible, projective, complex surface, polarized by a very ample line bundle $mathcal L$ of degree $d > 35$. In this paper we prove that $K^2_Sgeq -d(d-6)$. The bound is sharp, and $K^2_S=-d(d-6)$ if and only if $d $ is even, the linear system $|H^0(S,mathcal L)|$ embeds $S$ in a smooth rational normal scroll $Tsubset mathbb P^5$ of dimension $3$, and here, as a divisor, $S$ is linearly equivalent to $frac{d}{2}Q$, where $Q$ is a quadric on $T$.
107 - Omid Amini , Janne Kool 2014
Let $Gamma$ be a compact metric graph, and denote by $Delta$ the Laplace operator on $Gamma$ with the first non-trivial eigenvalue $lambda_1$. We prove the following Yang-Li-Yau type inequality on divisorial gonality $gamma_{div}$ of $Gamma$. There i s a universal constant $C$ such that [gamma_{div}(Gamma) geq C frac{mu(Gamma) . ell_{min}^{mathrm{geo}}(Gamma). lambda_1(Gamma)}{d_{max}},] where the volume $mu(Gamma)$ is the total length of the edges in $Gamma$, $ell_{min}^{mathrm{geo}}$ is the minimum length of all the geodesic paths between points of $Gamma$ of valence different from two, and $d_{max}$ is the largest valence of points of $Gamma$. Along the way, we also establish discre
96 - Matteo A. Bonfanti 2015
Let $S$ be a surface isogenous to a product of curves of unmixed type. After presenting several results useful to study the cohomology of $S$ we prove a structure theorem for the cohomology of regular surfaces isogenous to a product of unmixed type w ith $chi (mathcal{O}_S)=2$. In particular we found two families of surfaces of general type with maximal Picard number.
104 - Vijaylaxmi Trivedi 2021
Here we prove that the Hilbert-Kunz mulitiplicity of a quadric hypersurface of dimension $d$ and odd characteristic $pgeq 2d-4$ is bounded below by $1+m_d$, where $m_d$ is the $d^{th}$ coefficient in the expansion of $mbox{sec}+mbox{tan}$. This prove s a part of the long standing conjecture of Watanabe-Yoshida. We also give an upper bound on the HK multiplicity of such a hypersurface. We approach the question using the HK density function and the classification of ACM bundles on the smooth quadrics via matrix factorizations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا